

Università degli Studi di Ferrara

Strategies for assessing high intensity radioactive sources with unknown shield

Master's degree in Physics AA 2022/2023

Supervisor

Prof. Fabio Mantovani

Co-supervisor

Dr. Matteo Albéri

Candidate Gabriele Galli

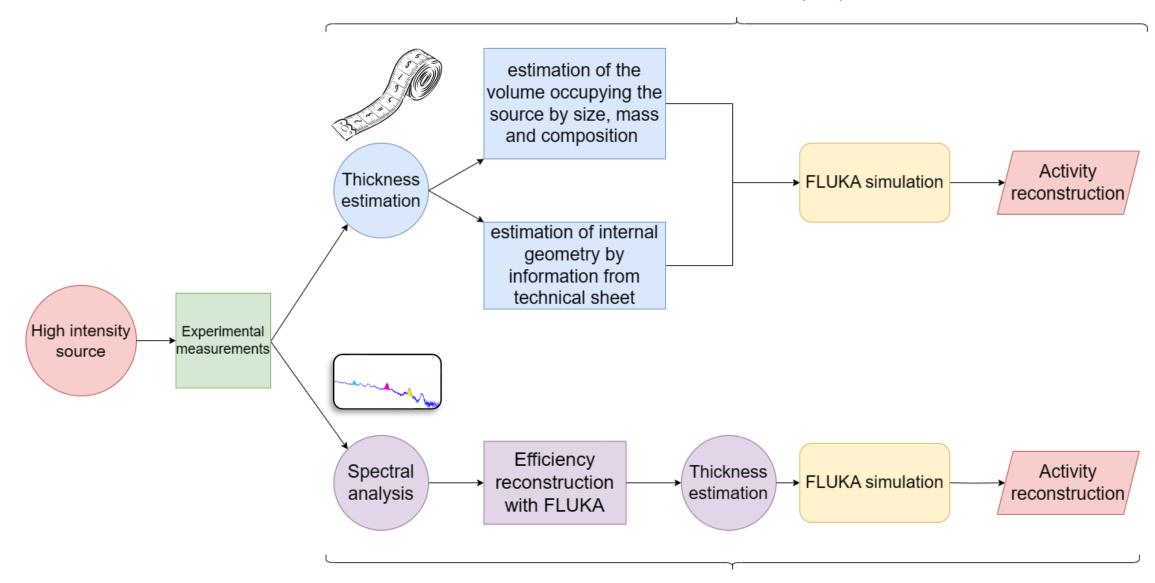
OUTLINE

- Scientific challenge
- Rationale
 - Indirect method
 - Photopeak method
- Monte Carlo (MC) input and constraints
- Detector efficiency
- Experimental conditions
- Analysis and results
- Conclusion and perspectives

SCIENTIFIC CHALLENGE

Unorganized site containing 7 unidentified radioactive sources with the following features:

- high activity sources such (e.g. ²²⁶Ra, ⁶⁰Co, ¹³⁷Cs)
- containers with uncertain features, thus unknown thickness
- unknown activity, except for dubious past measurements, carried out unclearly and of unknown origin
- need to be **transported** to a final disposal site



ID	Radionuclide	Shielding material	Expected activity [Bq]
S2	²²⁶ Ra	Pb	$(1.06 \pm 0.16) \cdot 10^6$
S4	⁶⁰ Co	Depleted Uranium	$(8.6 \pm 1.3) \cdot 10^8$
S5	¹³⁷ Cs	Pb	$(7.70 \pm 1.16) \cdot 10^{10}$
S6	⁸⁵ Kr	Stainless steel	$(4.4 \pm 0.7) \cdot 10^6$
S7	¹⁹² Ir and ¹³⁷ Cs	Depleted Uranium	$(2.2 \pm 0.3) \cdot 10^{-3}$
S9	²²⁶ Ra	Pb	$(5.3 \pm 0.8) \cdot 10^7$
S10	²²⁶ Ra	Pb	/

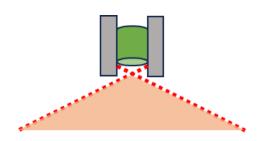
WORKFLOW: INDIRECT METHOD (IDM) AND PHOTOPEAK METHOD (PHM)

INDIRECT METHOD (IDM)

PHOTOPEAK METHOD (PHM)

DETECTOR

- 2" CeBr₃ scintillation detector
- Volume 103 cm³
- Resolution of 4.1% at 661.7 keV (¹³⁷Cs)


R[%] =

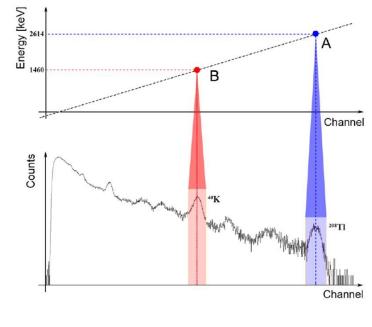
• 19 ns photon mean life

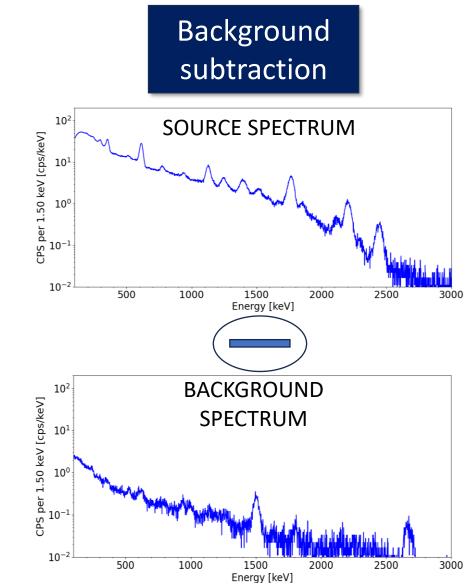
Multi Channel Analyzer

- 2 PLA coating
- **③** CeBr₃ scintillator
- ④ Lead shielding

- Partially collimated with a 1.25 cm Pb shield (~160° vision angle) attenuating the background by the 60%
- Multi Channel Analyzer with Bluetooth connection

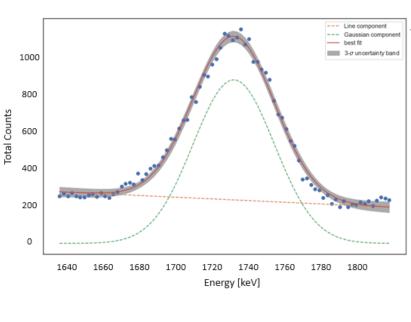
30 Nal 25 CeBr₃ Resolution [%] 20 Nal fit CeBr₃ fit 15 10 5 -0 + 500 1000 1500 2000 2500 3000 0 Energy [keV]

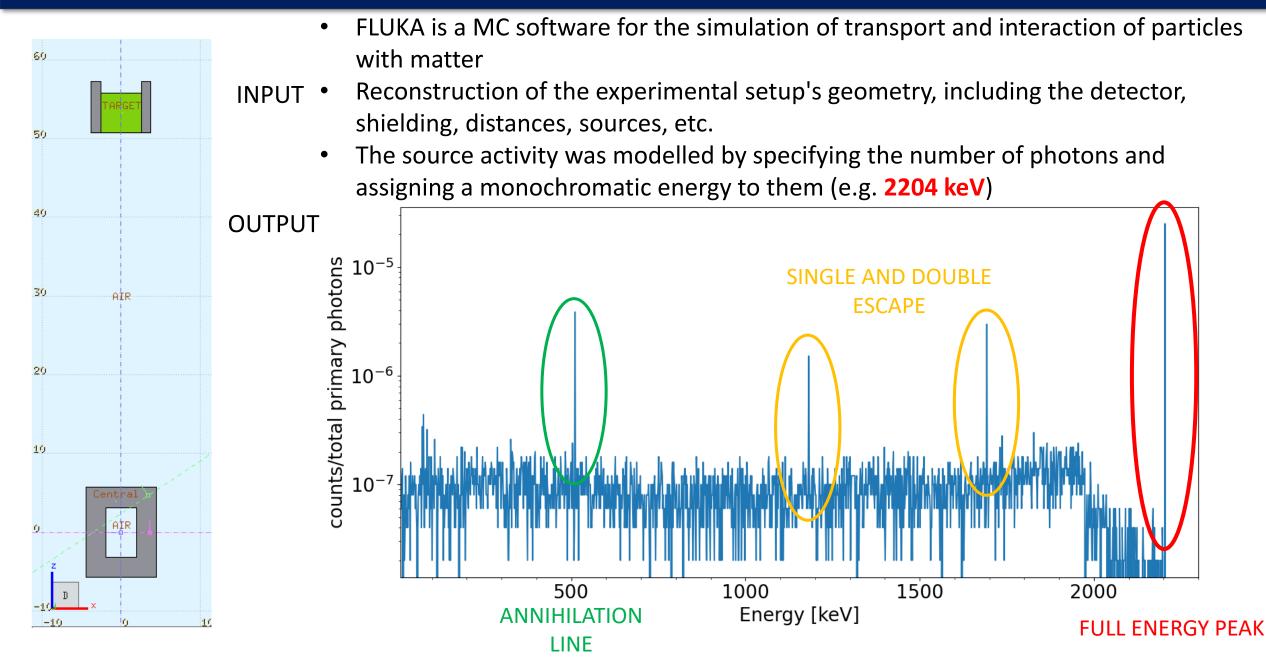

FWHM


E

SPECTRAL ANALYSIS

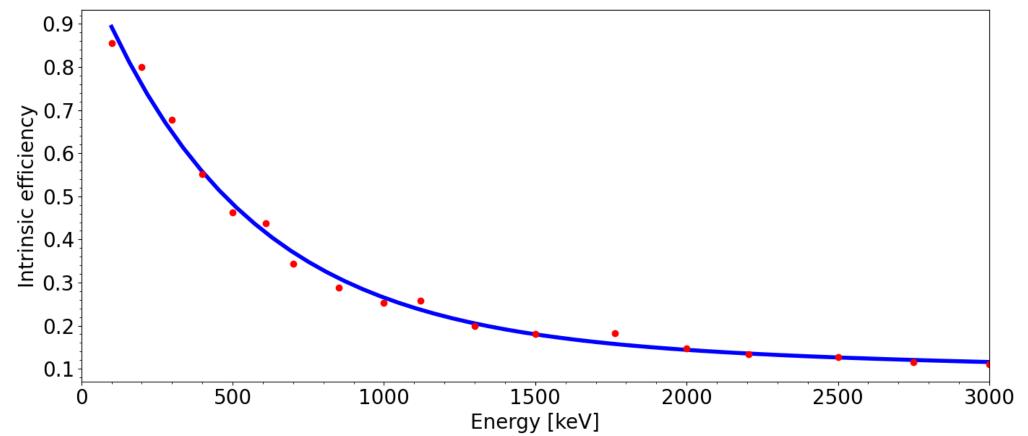
Energetic calibration


 Establishing the relationship between the acquisition channel and the energy



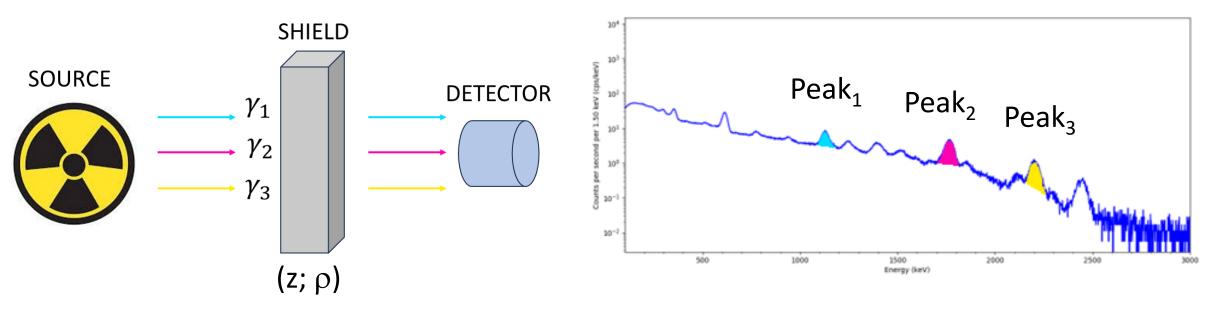
- Combination of gaussian and linear fit
- Net count per second calculation N_{net} [cps]

MONTE CARLO SIMULATIONS WITH FLUKA


INTRINSIC EFFICIENCY CURVE

Photons_{recorded}/

 $f(E) = A_1 e^{-A_2 E} + A_3 e^{-A_4 E}$


Photons_{incoming}

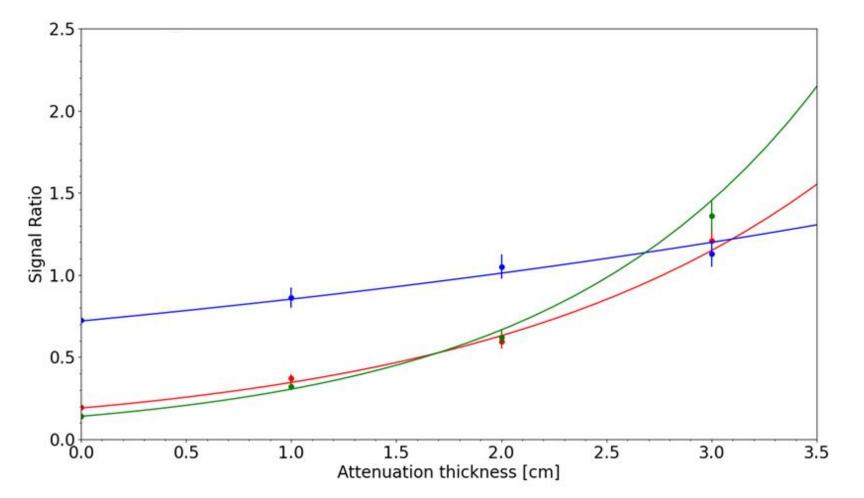
- The intrinsic efficiency is related to the detector's ability to record incoming photons $$\epsilon_{\rm intrinsic}$$
- Simulation of a detector-source setup in a vacuum in the energy range 100-3000 keV
- The function applied for the fitting as suggested in [1]

[1] Knoll, G.F., Radiation detection and measurement. 2010: John Wiley & Sons.

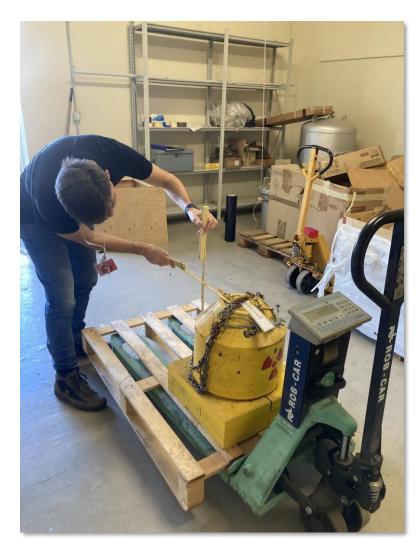
PHOTOPEAK METHOD FOR ESTIMATING THE THICKNESS

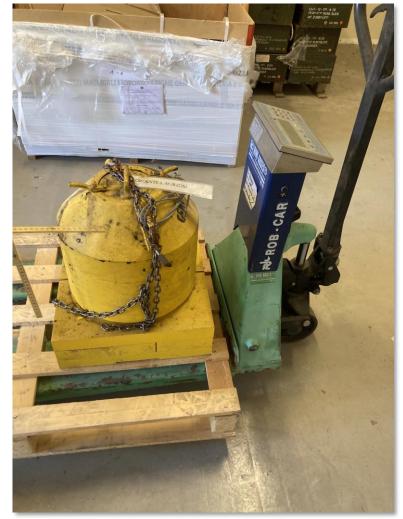
- Consider a source emitting at least 2 gammas γ_1 , γ_2 with energies E_1 (keV), E_2 (keV) and intensities I_1 , I_2
- A uniform shield with density ρ (g/cm³) and thickness z (cm)
- Linear attenuation coefficient $\lambda_1(1/cm)$, $\lambda_2(1/cm)$
- A detector recording the two photopeaks cps Peak₁, Peak₂
- With intrinsic efficiencies ϵ_1^{int} , ϵ_2^{int}

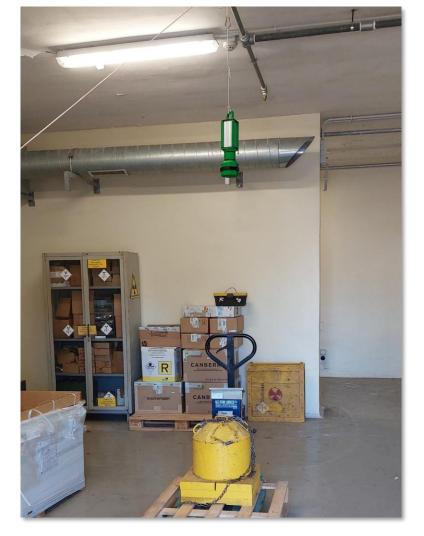
Knowing
$$\varepsilon_1^{\text{int}}$$
, $\varepsilon_2^{\text{int}}$ one can calculate: $z = \frac{1}{\lambda_2 - \lambda_1} \ln \left(R_{1,2} \cdot \frac{\varepsilon_1^{\text{int}} I_2}{\varepsilon_2^{\text{int}} I_1} \right)$


$$\frac{\text{Peak}_1}{\text{Peak}_2} = R_{1,2} = \frac{\varepsilon_1^{int} I_1}{\varepsilon_2^{int} I_2} e^{(z)\lambda_2 - \lambda_1)}$$

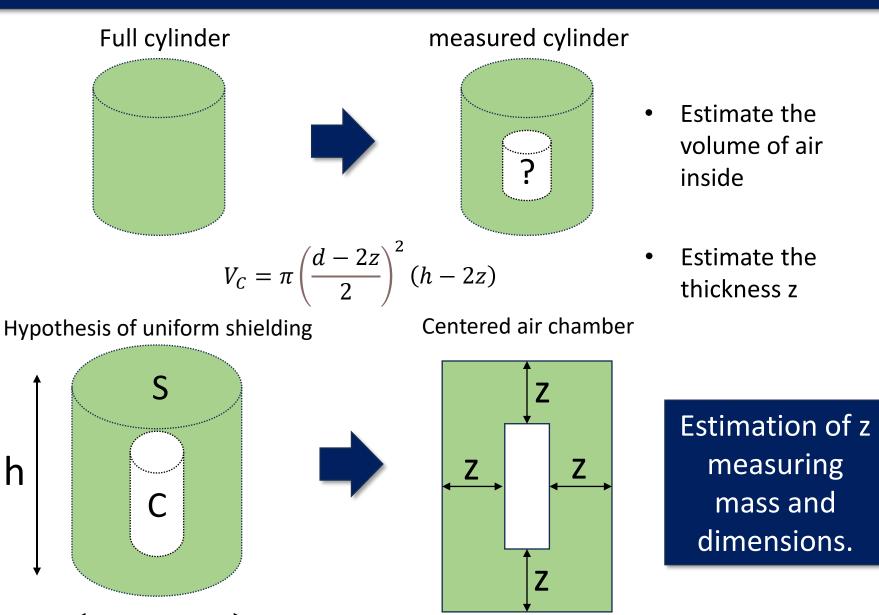
Estimation of z studying photopeak ratio


SIGNAL RATIO AS A FUNCTION OF ATTENUATION (²²⁶Ra): analytical vs MC


- Analytical calculation of the ratios R1, R2, R3 as a function of the attenuation
- Simulation with FLUKA of the same ratios at 4 different thickness
 z = 0, 1, 2, 3 cm


R1 = S2 (E =1764 keV) / S1 (E = 609 keV) R2 = S3 (E =2204 keV) / S2 (E = 1764 keV) R3 = S3 (E = 2204 keV) / S1 (E = 609 keV)

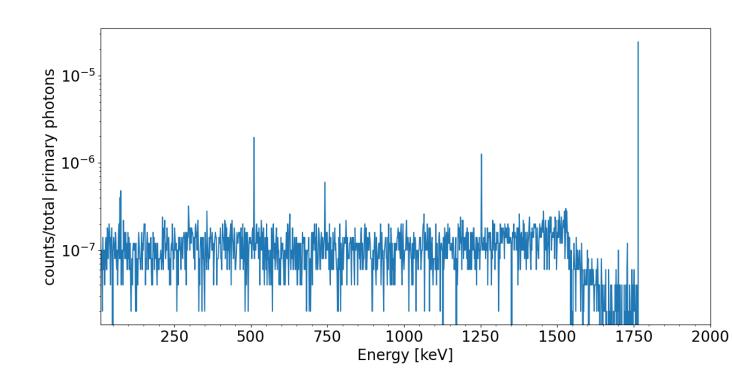
EXPERIMENTAL CONDITIONS


Measurement of the external dimensions of the container

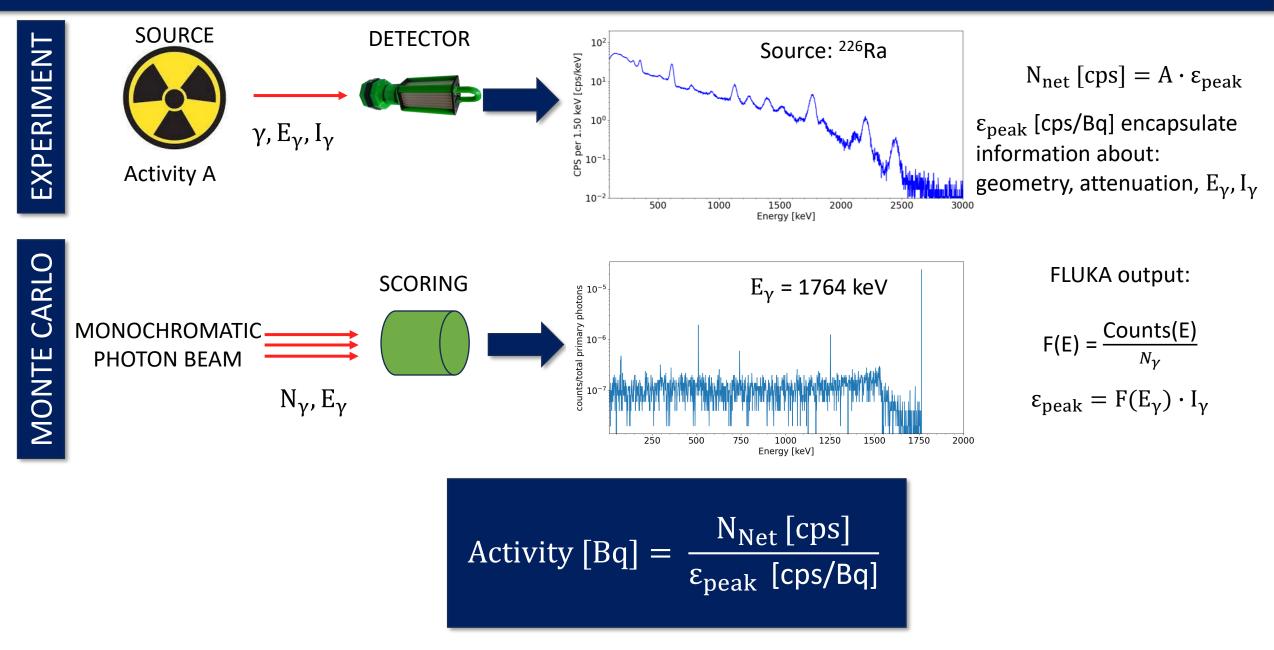
Measurement of the mass of the container

Measurement of the detector-source distance

INDIRECT METHOD FOR ESTIMATING THE THICKNESS



MC SIMULATION ANALYSIS OF S9 (226Ra)



Simulation steps:

- Reconstruction of the Pb cylinder with m = 5 kg and a centered air chamber inside
- Generation of 2.10⁷ photons with energy **1764 keV**
- The run lasted for 20 minutes.
- This resulted in the following spectrum.

EXPERIMENTAL AND MONTE CARLO SYNERGY

ESTIMATION OF THICKNESS AND ACTIVITY WITH IDM

ID	Radionuclide	Shielding material	Thickness with IDM [cm]	Expected Activity [Bq]	Experimental Activity [Bq]
S2	²²⁶ Ra	Pb	17.0 ± 1.0	$(1.09 \pm 0.16) \cdot 10^{10}$	$(4.98 \pm 1.76) \cdot 10^9$
S4	⁶⁰ Co	Depleted Uranium	9.5 ± 1.0	$(8.6 \pm 1.3) \cdot 10^8$	$(2.30 \pm 0.80) \cdot 10^9$
S5	¹³⁷ Cs	Pb	8.5 ± 1.0	$(7.70 \pm 1.16) \cdot 10^{10}$	$(2.15 \pm 1.23) \cdot 10^{10}$
S6	⁸⁵ Kr	Stainless Steel	0.5 ± 0.2	$(4.4 \pm 0.7) \cdot 10^{6}$	$(4.15 \pm 2.22) \cdot 10^7$
S7	¹³⁷ Cs	Depleted Uranium	3.8 ± 1.0	$(3.7 \pm 0.6) \cdot 10^9$	$(1.95 \pm 1.05) \cdot 10^{10}$
57	¹⁹² lr	Depleted Uranium	3.8 ± 1.0	$(2.2 \pm 0.3) \cdot 10^{-3}$	<mda< td=""></mda<>
S9	²²⁶ Ra	Pb	2.6 ± 1.0	$(5.3 \pm 0.8) \cdot 10^7$	$(2.44 \pm 1.29) \cdot 10^7$
S10	²²⁶ Ra	Pb	5.1 ± 1.0	/	$(1.93 \pm 1.07) \cdot 10^8$

- Almost all measurements are within **2 sigma compatibility**.
- Iridium is below the MDA, explaining why it was not detected.
- The measurement furthest from the expected value is S5 (3.2 sigma), a complex situation where the detector was not even axially aligned with the source.
- The best results were obtained for S4 and S7, for which technical sheets were available.
- S10 does not have an expected activity value.

ESTIMATION OF THICKNESS AND ACTIVITY WITH PHM (S9)

	Peak 1			Peak 2	2	Peak 1	
ID	Energy [keV]	Net	cps Energ	y [keV]	Net cps	Peak 1 Peak 2	Thickness [cm]
	1764	185.0 ±	2.1 112	20 1	89.7 ± 2.2	0.98 ± 0.02	2.18+0.09-0.09
S9	2204	46.1 ±	0.9 176	54 1	85.0 ± 2.1	0.25 ± 0.01	3.08+0.70-0.69
	2204	46.1 ±	0.9 112	20 1	89.7 ± 2.2	0.24 ± 0.01	1.26+0.11-0.13
. ,	d weighted						
average to minimize error. Achieved a smaller relative uncertainty , approximately				Expect	ed	Indirect Method	Photopeak method
			Thickness [cm]	\		2.6 ± 1.0	1.9 ± 0.1
5%. Attained	compatibilit	у –	Activity [Bq]	(5.3 ± 0.8	3) 10 ⁷	(2.4 ± 1.3) 10 ⁷	(4.6 ± 0.2) 10 ⁷

within 0.8 sigma of the expected activity.

ESTIMATION OF THICKNESS AND ACTIVITY WITH PHM (S10)

-		Pe	eak 1		Peak 2	Dogly 1	Thickness [cm]
	ID -	Energy [keV]	Net cps	Energy [keV] Net cps	Peak 1 Peak 2	
-		1764	72.9 ± 1.4	1120	51.5 ± 1.3	1.42 ± 0.04	4.43+0.17-0.18
	S10	2204	20.2 ± 1.2	1764	72.9 ± 1.4	0.27 ± 0.01	1.31+0.50-0.29
		2204	72.9 ± 1.4	1120	51.5 ± 1.3	0.39 ± 0.02	3.59+0.27-0.29
•	average	d weighted to minimize ei d a smaller rel			Expected	Indirect Method	Photopeak method
	 uncertainty, approximately 10%. Attained compatibility within 2 sigma of the IDM 			ess [cm]	\	5.0 ± 1.0	3.5 ± 0.2
•				ity [Bq]	\	(1.9 ± 1.1) 10 ⁸	(2.8 ± 0.3) 10 ⁷

activity.

CONCLUSIONS

How to estimate activity of intense sources with unknown shielding to protect operators from radiological risks?

MC simulations have been developed that have allowed us to reconstruct the efficiency curve of the detector that is one fundamental piece for the analysis of experimental results.

The method allowed to estimate the thickness of an unknown shielding (3.5±0.2 cm) and the activity (28±3 MBq) of an unknown source of ²²⁶Ra. A method has been developed that, considering fixed thickness, detector efficiency and analyzing the relative relationships between the intensity of 3 different photopeaks, has allowed to estimate the intensity (46±2 MBq) of a ²²⁶Ra compatible to 1 sigma with the expected value.

Based on indirect measurements of the thickness of the shielding, the activities of 7 high intensity sources were reconstructed at less than 2 sigma compatible with the expected values.

PERSPECTIVES

- PHM cannot be applied in the case of sources emitting only a single gamma line, like ¹³⁷Cs.
- Advance the study and development of the "peak-to-valley" method as an evolution of the photopeak approach.
- Utilize the "peak-tovalley" method to analyze spectral deformation due to attenuation, enabling more accurate inference of shielding thickness.

Peak-to-valley ratios for three different HPGe detectors for the assessment of 137Cs deposition on the ground and the impact of the detector field-ofview

Karl Östlund*, Christer Samuelsson, Sören Mattsson, Christopher L. Rääf

Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, SE-205 02 Malmö, Sweden

ARTICLE INFO

Keywords: Depth distribution

MCNP

In situ

Cs-137 HPGe

PTV ratio

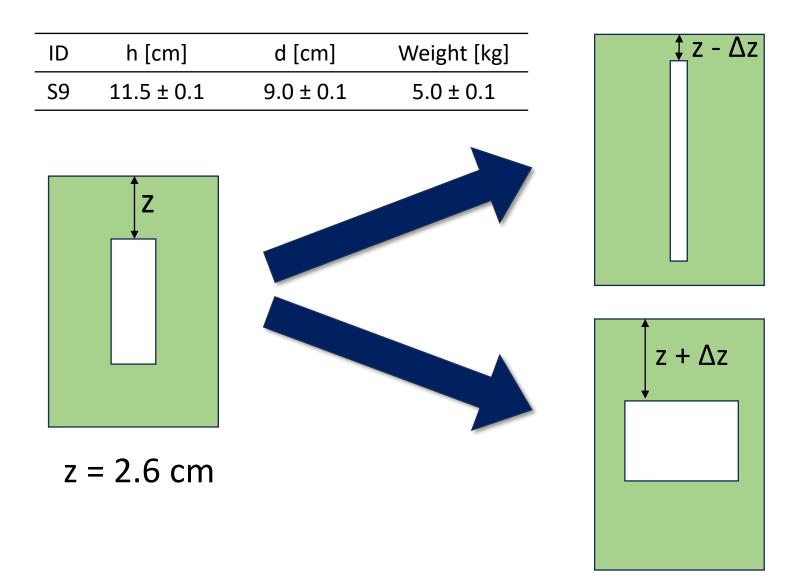
Field of view Deposition Th det Th ann

INSPIRE

ABSTRACT

The peak-to-valley (PTV) method was investigated experimentally comparing PTV ratios for three HPGe detectors, with complementary Monte Carlo simulations of scatter in air for larger source-detector distances. The measured PTV ratios for 137Cs in air were similar for three different detectors for incident angles between 0 and 90°. The study indicated that the PTV method can differentiate between surface and shallow depth sources if the detector field of view is limited to a radius of less than 3.5 m.

) CrossMark


THANK YOU FOR THE ATTENTION

MC VALIDATION

- The Monte Carlo simulation underwent a rapid validation process through a measurement from a ¹³⁷Cs source, with a certified activity of 128 kBq and an uncertainty of 1%, placed at a 1-meter distance from the detector.
- The activity reconstructed from the net counts at the 662 keV peak and the full-energy peak efficiency simulated with FLUKA, resulted in an estimated activity that is compatible within 1.5 sigma of the certified value.

Net cps	\mathcal{E}_{fep}	Activity certified [Bq]	Activity Reconstructed [Bq]
7.3±0.1	(5.24±0.30)·10 ⁻⁵	$(1.28\pm0.01)\cdot10^{5}$	(1.39±0.08)·10⁵

The uniform shielding hypothesis could be broken if the **shape of the chamber changes** while keeping the chamber volume constant.

 conservative approach to estimate the correct activity order of magnitude

 $\Delta Z = 1 \text{ cm}$

 $Z = 2.6 \pm 1.0$ cm