

Status of preparations for a polarized-fuel Demonstration experiment in the DIII-D Tokamak

Andrew Sandorfi

Thomas Jefferson National Accelerator Facility, Newport News VA

(for the Spin-Polarized Fusion (SPF) collaboration)

The road to fusion through magnetic confinement - preliminaries

- intended fuel: $D + t \rightarrow \alpha + n$
- about 180 research tokamaks have been built; there are currently about 30 in operation
- ⇔ mostly studying *D+D* reactions
- quantum leap towards fusion power:
 Int. Thermonuclear Experimental Reactor

DIII-D (San Diego / USA)

JET (Oxfordshire / UK)

only machine that can run with tritium

¹/₂ GW reactor - under construction

A.M. Sandorfi – Ferrara, Oct 2-3'17

(Cadarache / France)

The road to fusion through magnetic confinement

	V(plasma)	B _c (tesla)	P(MW)	Q = P(fus)/P(in)	coils
DIII-D	20 m ³	2.1	_	<<1	normal
JET	90 m ³	3.8	16	$\sim \frac{2}{3}$	normal
ITER	700 m ³	5.3	500	> 10	superconducting

- superconducting coils are needed to reach high field over a large volume
 concerns over potential field degradation from neutron flux
- ITER is to be a stepping-stone, requiring at least one more iteration to reach a viable fusion power plant
- Plant costs ~ V(plasma) x $(B_c)^2$

Jefferson Lab

⇔ *eg*. **20 – 40 B\$ for ITER**

Reactions through the low energy tails of fusion resonances (in the Sun or in a tokamak)

The potential of SPIN

- fusion fuels: $D + T \Rightarrow \alpha + n$; (and $D + {}^{3}He \Rightarrow \alpha + p$)
 - ↔ dominated by J=3/2 resonance just above reaction threshold
 - ↔ ion temperatures < 10s of KeV ⇒ s-waves dominate
 - \leftrightarrow D (s=1) and T (s= $\frac{1}{2}$) preferentially fuse when spins are aligned

$$\boldsymbol{\sigma}_{cm} = \boldsymbol{\sigma}_0 \left\{ 1 + \frac{1}{2} \vec{P}_D^V \cdot \vec{P}_T \right\}$$

• *polarized fuels* ⇔ up to 50% enhancement in the cross section

Reaction rates in a heated plasma

~ cross sections averaged over a Maxwellian velocity distribution

$$R = n_D n_T V_{pl} x \left\{ \left\langle \sigma \upsilon \right\rangle = \frac{4c}{\sqrt{2\pi M_r} (k_B T)^{3/2}} \int e^{-\varepsilon/k_B T} \varepsilon \sigma(\varepsilon) d\varepsilon \right\}$$

J.N. Bahcall, Astrophys. J. 143 (1966) 259

- D+T resonance peaks at 65 keV
- ITER plasma expected to peak at 18 keV
- most of the yield from low energies
- <σv> integral extends to higher energies but saturates by ~ 50 keV

Jefferson Lab

Dependence on toroidal field

alpha heating \Leftrightarrow non-linear enhancements from the resonance tails

ITER Power simulations with polarized fuel: (Sterling Smith – GA)

new simulations for ITER show net 75% gain in power and
 Q = P(fusion)/P(in) with spin polarized fuel, from increased alpha heating

⇔ polarization gain is independent of field,

→ compensates for a drop in B

The potential of SPIN

- fusion fuels: $D + T \Rightarrow \alpha + n$; (and $D + {}^{3}He \Rightarrow \alpha + p$)
 - ↔ dominated by J=3/2 resonance just above reaction threshold
 - ↔ ion temperatures < 10s of KeV ⇒ s-waves dominate
 - \leftrightarrow D (s=1) and T (s= $\frac{1}{2}$) preferentially fuse when spins are aligned

$$\boldsymbol{\sigma}_{cm} = \boldsymbol{\sigma}_0 \left\{ 1 + \frac{1}{2} \vec{P}_D^V \cdot \vec{P}_T \right\}$$

- **polarized fuels** ⇔ up to **50% enhancement** in the cross section
 - ⇔ up to **75% enhancement in power and Q**
 - ⇔ can compensate for magnetic field degradation on the ITER scale, and maintain high Q
 - \Leftrightarrow costs savings of future fusion reactor plants (~ B^2) as much as 20% \Leftrightarrow a potentially huge factor !

Polarization survival - history

- Potentially large benefits require fuel polarization to survive a 10^8 K plasma for the energy containment time \sim a few sec
- History
 - Kulsrud, Furth, Valeo & Goldhaber, Phys Rev Lett 49 (82) 1248
 - Lodder, Phys. Lett. A98 (83) 179
 - Greenside, Budny and Post, J. Vac. Sci Technol. A 2(2), (84) 619
 - Coppi, Cowley, Kulsrud, Detragiache & Pegoraro, Phys Fluids 29 (86) 4060
 - Kulsrud, Valeo & Cowley, Nucl Fusion 26 (86) 1443
 - Cowley, Kulsrud, Valeo, E.J. Phys. Fluids 29 (86) 1443
- Depolarization mechanisms
 - a great <u>many</u> mechanisms were investigated in the '80s; two survive scrutiny
 - both hinge on wall recycling

Fuel Recycling from the walls through the scrape-off layer

Fuel Recycling from the walls through the scrape-off layer

- after injection, some few %
 of the fuel undergoes fusion;
 the rest escapes the plasma
- escaping ions strike outer walls and are neutralized
- depending on wall conditions, ions could depolarize
- if these reenter the plasma, they could dilute polarization of the core

 fuel leaving the plasma will eventually diffuse through the SOL and be pumped away

Jefferson Lab

cross section of inner vacuum chamber wall

last closed field line

nested sets of closed magnetic field lines

Scrape-Off layer (SOL)

Divertor region to remove "helium ash"

the ITER scrape-off layer

What's new ?

- Plasma Simulations for ITER:
 - Pacher *et al., Nucl. Fus.* **48** (2008) 105003
 - Garzotti et al.,
 Nucl. Fus. 52 (12) 013002

 \Leftrightarrow at $\frac{1}{2}$ GW, the SOL is opaque to neutrals, which are swept to the divertor by <u>convection</u>

fuel recycling from the walls will be insignificant in ITER scale reactors

Jefferson Lab

cross section of inner vacuum chamber wall

last closed field line

nested sets of closed magnetic field lines

Scrape-Off layer (SOL)

Divertor region to remove "helium ash"

Polarization dilution from HFS in partially ionized states at injection

- *g.s.* of all fuels (DT, HD, ³He, ...) have 2 electrons paired to 1s \Leftrightarrow no nuclear int.
- after injection, a partially-ionized state with 1 electron will exist for ~ 10 ms, during which there will be level mixing and a degree of dilution of nuclear pol

net fractional polarization loss:
$$\frac{\Delta P}{P} = \frac{1}{2} \left[1 + \frac{4\left(\mu_e - \mu_I\right)^2 B^2}{A_{HFS}^2} \right]^{-1}$$

 \Rightarrow ³He has the largest hyperfine splitting, A_{HFS} = -8.66565 GHz

⇔ mean △P/P for ³He, averaged over the DIII-D plasma field region and weighted by particle density = 1 %

 \Leftrightarrow HFS ~ 1/B² \Leftrightarrow irrelevant in ITER, due to higher magnetic fields

Q: how to produce polarized fuel for a ~ GW reactor ?

- every characteristic of polarized material comes at a cost;
 eg. NP techniques have emphasized lifetime (T₁) of 10⁶ –to- 10⁸ sec,
 - (which is useless for fusion where \sim 30 sec would be more than adequate)
- ITER will require 2000 moles/day, much more than consumed in NP exps

significant R&D, tailored to fusion requirements, will be required

- eg. <u>1st order speculation</u>:
 - spin-exchange optical pumping (SEOP) of molecular DT gas with 2 lasers; alternate: separate SEOP of HD and HT
 - condense polarized gas to solid pellets for injection with *Pellet Injectors*, modified to maintain continuous magnetic holding fields

• Crucial to first verify expectation of polarization survival in plasma

SPF (Spin-Polarized-Fusion) Collaboration

Jefferson Lab

<u>JLab:</u>

A. Deur, C. Hanretty, M. Lowry, A.M. Sandorfi, X. Wei

<u>Univ. of Connecticut</u> K. Wei

University of Virginia

J. Liu, G.W. Miller, S. Tafti, X. Zheng

General Atomics/Fusion Energy Research

<u>GA-DIII-D:</u> N. Eidietis, A. Hyatt, G. Jackson, M. Lanctot, D. Pace, S. Smith, M. Wade

<u>GA-ICF Pellet Division:</u> M. Farrell, M. Hoppe, M. Schoff, N. Alexander

Oak Ridge National Lab

L.R. Baylor

UC-Irvine

W.W. Heidbrink

SPF collaboration: Polarization survival test in the DIII-D Tokamak

General Strategy: use existing NP techniques and equipment to create polarization life-times sufficient to produce fuel for a test at DIII-D, thus mitigating costs in a demonstration exp.

Jefferson Lab

In nuclear reactions, isospin is a <u>very good</u> quantum number, particularly at low energies

- ⇔ ⁵He and ⁵Li are *mirror* nuclei with virtually identical low-energy structure
- $\Leftrightarrow D + T \rightarrow {}^{5}\text{He} \rightarrow \alpha + n \quad and \quad D + {}^{3}\text{He} \rightarrow {}^{5}\text{Li} \rightarrow \alpha + p$ are mirror reactions, with the same spins, incorporating the same nuclear physics
- ⇔ Polarization survival can be tested with D + ³He → α + p and lessons learned can be directly applied to D + T → α + n

Strategy for testing polarization survival in DIII-D

- test reaction: $\vec{D} + {}^{3}\vec{H}e \rightarrow \alpha + p$ {mirror reaction to $D + t \rightarrow \alpha + n$ }
- \vec{D} shells: use existing JLab facilities to create solid $H\vec{D}$

• ${}^{3}\vec{H}e$ shells: develop polarized ${}^{3}\vec{H}e$ gas-filled shells at existing UVa facilities

- **DIII-D**: generate *H* plasma in the DIII-D Tokamak
 - → inject polarized fuel into plasma, alternating spin alignment:

parallel: $H\vec{D}$ $\uparrow + {}^{3}\vec{H}e$ \uparrow anti-parallel: $H\vec{D}$ $\downarrow + {}^{3}\vec{H}e$ \uparrow $\rbrace \Leftrightarrow compare proton yields$

Status of efforts towards a SPF demonstration experiment

- White Paper & presentation to a DOE-FESAC subcommittee May 31/17 ✓ for inclusion in the Fusion Energy Sciences long-range R&D plan
 → report due out Jan/2018
- \Leftrightarrow proposed next step:
 - funding in FY'19 (Oct'18) for **TR-3** (*Technical Readiness Level 3*):
 - the beginning of an official DOE-FES "project"
 - ➔ initial designs and cost analysis of each major subsystem

$D + {}^{3}He \rightarrow \alpha + p$ distributions wrt torus field

⇔ neglecting interference terms (~ 2-to-3%)

$D + {}^{3}He \rightarrow \alpha + p$ distributions wrt torus field

⇔ Neglecting interference terms (~ 2-to-3%)

Magnetic field lines in a tokamak

 e⁻ and ions follow helical trajectories around nested sets of closed magnetic field lines

single magnetio field line

Jefferson Lab

- *passing* orbits, confined around the torus
- *trapped* (*mirror*) orbits, with larger *R* variations, are confined by local angular momentum conservation

Helical gyro-rotation

$$\Rightarrow L_{Gyro} \propto \frac{V_{\perp}^2}{B}$$

as R decreases, $V_{par} \rightarrow 0$ and orbit reverses direction

Cowley, Kulsrud, Valeo, Phys Fluids **28** (86) 430 \Leftrightarrow Fokker-Planck eqs for B =5 tesla, kT_{ion}=10 keV plasma :

- collisional depolarization negligible in uniform B, and $\sim 10^{-4}$ s⁻¹ for inhomogeneous B

Cowley, Kulsrud, Valeo, Phys Fluids **28** (86) 430 ⇔ Fokker-Planck eqs for B =5 tesla, kT_{ion}=10 keV plasma :

- no ion depolarization without collisions spin just follows the field
- collisional depolarization negligible in uniform B, and $\sim 10^{-4}$ s⁻¹ for inhomogeneous B
- worst case: δB_{\perp} = 1 gauss plasma wave fluctuations at $f_{L} \Leftrightarrow$ depolarization $T_{1} \sim 10$ s (tritons)
 - plasma waves (eg. Alfvén eigenmodes) suppressed in asymmetric plasmas, such as ITER or DIII-D

Preparing polarized-fuel for injection; delivery via Inertial-Confinement (ICF) polymer shells

Strategy for testing polarization survival in DIII-D

- test reaction: $\vec{D} + {}^{3}\vec{H}e \rightarrow \alpha + p$ {mirror reaction to $D + t \rightarrow \alpha + n$ }
- \vec{D} shells: use existing JLab facilities to create solid $H\vec{D}$
 - → diffuse 200 atm *HD* into ICF shells; cool to solid;
 polarize *H* and *D*; *H* ⇒ *D* spin transfer to maximize *D* spin;
 transport polarized pellets to DIII-D; load into 2 K cryo-gun

- ${}^{3}\vec{H}e$ shells: develop polarized ${}^{3}\vec{H}e$ gas-filled shells at existing UVa facilities
 - → diffuse ~20 atm polarized ${}^{3}\vec{H}e$ into ICF shells; cool to seal; move polarizer to DIII-D; fill shells; load into 77 K cryo-gun
- **DIII-D**: generate Hydrogen plasma in the DIII-D Tokamak
 - → inject polarized fuel into plasma, alternating spin alignment:

parallel: $H\vec{D} \uparrow + {}^{3}\vec{H}e \uparrow$ anti-parallel: $H\vec{D} \downarrow + {}^{3}\vec{H}e \uparrow$ $\} \Leftrightarrow compare proton yields$

expected $d+^{3}He \rightarrow \alpha + p$ signal with existing NP material

Jlab:
$$P_V(\vec{D}) = 0.40$$

UVa: $P({}^3\vec{H}e) = 0.65$

$$\left\langle \sigma^{par} \upsilon \right\rangle = \left\langle \sigma_{o} \upsilon \right\rangle \left\{ 1 + \frac{1}{2} (0.26) \right\}$$
$$\left\langle \sigma^{anti} \upsilon \right\rangle = \left\langle \sigma_{o} \upsilon \right\rangle \left\{ 1 - \frac{1}{2} (0.26) \right\}$$

Signal from comparing shots ⇔

$$\Rightarrow \frac{\left\langle \sigma^{par} \upsilon \right\rangle}{\left\langle \sigma^{anti} \upsilon \right\rangle} = 1.30$$

Strategy for testing polarization survival in DIII-D

- test reaction: $\vec{D} + {}^{3}\vec{H}e \rightarrow \alpha + p$ {mirror reaction to $D + t \rightarrow \alpha + n$ }
- *D* shells: use existing JLab facilities to create solid HD
 - \rightarrow Adapt known technology – a small NP target transport polarized pellets to DIII-D; load into 2 K cryo-gun
- ${}^{3}\vec{H}e$ shells: develop polarized ${}^{3}\vec{H}e$ gas-filled shells at existing UVa facilities \rightarrow diffuse ~20 atm polarized ${}^{3}He$ into ICF shells; cool to seal; move polarizer to DIII-D; fill shells; load into 77 K cryo-gun
- **DIII-D**: generate *Hydrogen* plasma in the DIII-D Tokamak
 - → inject polarized fuel into plasma, alternating spin alignment:

parallel: $H\vec{D} \uparrow + {}^{3}\vec{H}e \uparrow$ anti-parallel: $H\vec{D} \downarrow + {}^{3}\vec{H}e \uparrow$ $\} \Leftrightarrow compare proton yields$

Adapting HD polarized target technology

- use existing JLab facilities to create solid HD:
 - → diffuse ~ 200 atm HD into ICF shells, cool to solid – in NP compatible fixtures ⇔ eg.
 - → polarization of \vec{H} and \vec{D}

followed by $H \Rightarrow D$ spin transfer:

typical polarization decay times (T₁) of years; typical P(\vec{D}) ~ 40% in 25 cc NP targets \Leftrightarrow assumed for planning

- ⇔ limited by cooling rates and RF uniformity over large NP cells
- ⇔ the maximum of 67% should be approached in 0.03 cc ICF pellets
- → transport polarized pellets to DIII-D:
 NP targets routinely transported ~1 km to the Jlab experimental hall
 ⇔ need equipment to transport ~ 4000 km to DIII-D
- ➔ modify 2 K cryo-gun for injection of polarized pellets into DIII-D

Strategy for testing polarization survival in DIII-D

- test reaction: $\vec{D} + {}^{3}\vec{H}e \rightarrow \alpha + p$ {mirror reaction to $D + t \rightarrow \alpha + n$ }
- **D** shells: use existing JLab facilities to create solid HD
 - \rightarrow Adapt known technology – a small NP target transport polarized pellets to DIII-D; load into 2 K cryo-gun
- ${}^{3}\vec{H}e$ shells: develop polarized ${}^{3}\vec{H}e$ gas-filled shells at existing UVa facilities
 - ³He must be polarized 1st, then diffused into shell
- **DIII-D**: generate *Hydrogen* plasma in the DIII-D Tokamak
 - → inject polarized fuel into plasma, alternating spin alignment:

parallel: $H\vec{D} \uparrow + {}^{3}\vec{H}e \uparrow$ anti-parallel: $H\vec{D} \downarrow + {}^{3}\vec{H}e \uparrow$ $\} \Leftrightarrow compare proton yields$

Polarizing ${}^{3}\vec{H}e$ fuel

³He process - *spin exchange optical pumping*

- Rb vapor pumped with 795 nm laser -100W (in oven > 200 C; with ~1 % N₂; uniform B)
- Rb transfers polarization to K by collisions
- K transfers spin to ³He by collisions

- typical polarizations in pumping chamber: 70% at 10 amagats (~ 10 atm) (some further gain may be possible with the right geometry cell)
- large volume targets used in Nuclear Physics exp at JLab, SLAC,...
- need for high-power laser → must first polarize in glass cell,
 - → cool to 20 C to remove alkalis (~few ppm of 3 He)
 - ➔ then diffuse into ICF shell

Q: does the polarization survive permeation through the ICF shell wall ?

Imaging ICF pellets filled with polarized ${}^{3}\vec{H}e$ at UVa

glass bead

MRI scan of 2 mm OD ICF shells filled with polarized ³He Cooled to 77K; ³He outside shell pumped away

 ³He polarization inside ICF shells can be maintained for ~ 5 hr at 77 K

³He polarization loss during permeation

Time sequenced MRI of polarized ³He filling an ICF pellet

Room-temperature permeation of ${}^{3}\vec{H}e$ into ICF-GDP (Glow Discharge Polymer) pellets:

OD (µm)	wall thickness (µm)	Permeation time constant at 22C (s)	³ He P(in pellet)/P ₀	indry
1788	15	226	0.97 ±0.08 ±0.20	elimine
1918	26	397	0.71 ±0.10 ±0.20	

- work continuing to reduce Systematics
- planned ³He pressure = 20 to 25 atm
- Burst pressure of 4 mm Ø x 15 μ m wall GDP, cooled to 77 K = 40 atm

 \rightarrow 4 mm Ø x 15 µm wall pellets will work \checkmark

A.M. Sandorfi – Ferrara, Oct 2-3'17

Sys err

Strategy for testing polarization survival in DIII-D

- test reaction: $\vec{D} + {}^{3}\vec{H}e \rightarrow \alpha + p$ {mirror reaction to $D + t \rightarrow \alpha + n$ }
- \vec{D} shells: use existing JLab facilities to create solid $H\vec{D}$
 - Adapt known technology a small NP target transport polarized pellets to DIII-D; load into 2 K cryo-gun
- ${}^{3}\vec{H}e$ shells: develop polarized ${}^{3}\vec{H}e$ gas-filled shells at existing UVa facilities
 - → ³He must be polarized 1st, then diffused into shell
- **DIII-D**: generate Hydrogen plasma in the DIII-D Tokamak
 - → inject polarized fuel into plasma, alternating spin alignment:

parallel: $H\vec{D} \uparrow + {}^{3}\vec{H}e \uparrow$ anti-parallel: $H\vec{D} \downarrow + {}^{3}\vec{H}e \uparrow$ $\} \Leftrightarrow compare proton yields$

DIII-D Tokamak at General Atomics, San Diego

2.1 tesla torus (normal-conducting coils)

- 2.1 tesla max
 - B ramp up, 3 s
 - flat top ~ 10 s
 - ramp down, 7 s
- 15 min btw shots

Jefferson Lab

 80 keV neutral-beam Injectors for heating

•] | | = •

2.1 tesla torus (normal-conducting coils)

- 2.1 tesla max
 - B ramp up, 3 s
 - flat top ~ 10 s
 - ramp down, 7 s
- 15 min btw shots

Jefferson Lab

 80 keV neutral-beam Injectors for heating

Strategy for testing polarization survival in DIII-D

- test reaction: $\vec{D} + {}^{3}\vec{H}e \rightarrow \alpha + p$ {mirror reaction to $D + t \rightarrow \alpha + n$ }
- \vec{D} shells: use existing JLab facilities to create solid $H\vec{D}$
 - Adapt known technology a small NP target transport polarized pellets to DIII-D; load into 2 K cryo-gun
- ${}^{3}\vec{H}e$ shells: develop polarized ${}^{3}\vec{H}e$ gas-filled shells at existing UVa facilities
 - → ³He must be polarized 1st, then diffused into shell
- **DIII-D**: generate Hydrogen plasma in the DIII-D Tokamak
 - → inject polarized fuel into plasma, alternating spin alignment:

"signal" from comparing injections into different plasma shots <> requires good reproducibility

DIII-D Injection reproducibility

- shells propelled by high-pressure H₂ gas
- Balmer- α emissions monitor shell ablation
- laser Thompson-electron scattering:
 - ⇔ deposition profile & extent
 - \Leftrightarrow eff = ΔN_e / N_{fuel} = increased e⁻ density
 - ⇔ Vertical (V+1) or High-Field-Side injection gives deeper penetration of plasma core
- Edge-Localized-Modes (ELMs) can be triggered in *H-mode* (high confinement) plasmas
 - ⇔ fraction of shell mass can be ejected
 - ⇔ *E*(LFS, V+3) ~ ½ ; *E*(HFS, V+1) ~ 0.8 –to–1
 - \Leftrightarrow injection efficiencies can be measured (to ~5%)

• V+1 injection for HD & ³He

HFS

DIII-D Injection reproducibility

- shells propelled by high-pressure H₂ gas
- Balmer- α emissions monitor shell ablation
- laser Thompson-electron scattering:
 - ⇔ deposition profile & extent
 - \Leftrightarrow eff = ΔN_e / N_{fuel} = increased e⁻ density
 - ⇔ Vertical (V+1) or High-Field-Side injection gives deeper penetration of plasma core
- Edge-Localized-Modes (ELMs) can be triggered in *H-mode* (high confinement) plasmas
 ⇔ fraction of shell mass can be ejected
 - ⇔ *E*(LFS, V+3) ~ ½ ; *E*(HFS, V+1) ~ 0.8 –to–1
 - \Leftrightarrow injection efficiencies can be measured (to ~5%)
- ELMs are eliminated in Quiescent H-mode
 - neutral beams injected against counter-rotating plasma (ion) current
 - Plasma Phys. Cont. Fus. **44** (02) A253

• V+1 injection for HD & ³He

HFS

DIII-D plasma shot reproducibility

DIII-D plasma shots:

- 3 s ramp up to 2.1 tesla
- 10 s flat top, with 80 keV neutral-beam heating
- 7 s ramp down
- 15 min btw shots
- parameters of repeated shots are high correlated, to ~ 10%
- will need to study reproducibility of highperformance Quiescent Hmode for polarized fusion

Pace, Lanctot, Jackson, Sandorfi, Smith, Wei, J. Fus. Energy 35 (2016) 54

Systematic variations between plasma shots determines # shots needed for a definitive experiment

Jefferson Lab

How many shots in each spin alignment to reach 5σ confidence \Leftrightarrow Monte Carlo

- 8% plasma variation ⇔ 4 shots (P & A)
- 16% plasma variation \Leftrightarrow 18 shots (P & A)

Tracking fusion products in DIII-D: Spin Alignment and Orbit Losses

- parallel spins \rightarrow large $V_{|} \rightarrow$ large gyroradii \rightarrow protons hit the wall in a few orbits
- anti-parallel spins \rightarrow large $V_{\blacksquare} \rightarrow$ small gyroradii \rightarrow better confined

α and p loss-locations on Tokamak wall depend on initial polarizations

Tracking D + ³He $\rightarrow \alpha$ + p products in DIII-D

Tracking Simulations: (GA: D. Pace, M. Lanctot)

- fusion rate density taken from data with a solid D₂ pellet (shot 96369)
- cross sections scaled from D+D to D+³He
- T_{ion} energy scaled to 15 keV (as expected for Quiescent H-Mode)

Tracking D + ³He $\rightarrow \alpha$ + p products in DIII-D

Tracking Simulations: (GA: D. Pace, M. Lanctot)

- fusion rate density taken from data with a solid D₂ pellet (shot 96369)
- cross sections scaled from D+D to D+³He
- T_{ion} energy scaled to 15 keV (as expected for Quiescent H-Mode)
- fusion profile discretized; α+p generated along different polar (pitch) θ and azimuthal (gyrophase) φ, relative to the local field, weighting the relative number by the polarized angular distributions
- particles are tracked until striking a wall

Jefferson Lab

Predicted ratio of protons from anti-parallel & parallel spins

- use H-plasma heated with H neutral beams
- simulations follow secondary reactions to estimate background yields: ${}^{3}\text{He} + D \Rightarrow \alpha + p(Q = +18.3 \text{ MeV})$ $\vdash D + D \Rightarrow {}^{3}\text{He+n}(Q = + 3.3 \text{ MeV})$ E(p) ~ 15 MeV

$$\Box + D \Rightarrow T + p (Q = + 4.0 \text{ MeV})$$
 E(p) ~ 3 MeV

 \rightarrow D + T $\Rightarrow \alpha$ + n (Q = +17.6 MeV)

- 15 MeV protons from ³He + D $\Rightarrow \alpha$ + p provide a unique signature that is easily separated
- 2-step (D + D ⇒ ³He) + D wrt primary ³He + D is suppressed by n(D) / [n(D)²xn(D)], which is negligible

A.M. Sandorfi – Ferrara, Oct 2-3'17

SPF (Spin-Polarized-Fusion) Collaboration

Jefferson Lab

<u>JLab:</u>

A. Deur, C. Hanretty, M. Lowry, A.M. Sandorfi, X. Wei

<u>Univ. of Connecticut</u> K. Wei

University of Virginia

J. Liu, G.W. Miller, S. Tafti, X. Zheng

General Atomics/Fusion Energy Research

<u>GA-DIII-D:</u> N. Eidietis, A. Hyatt, G. Jackson, M. Lanctot, D. Pace, S. Smith, M. Wade

<u>GA-ICF Pellet Division:</u> M. Farrell, M. Hoppe, M. Schoff, N. Alexander

Oak Ridge National Lab

L.R. Baylor

UC-Irvine

W.W. Heidbrink

 $H\vec{D}$ & ³ $\vec{H}e$ pellet preparation

 ${}^{3}\vec{H}e$ pellet polarization

ICF pellets for HD, ³*He*

cryo-injection guns

fast particle detection

Status of efforts towards a SPF demonstration experiment

- White Paper & presentation to a DOE-FESAC subcommittee May 31/17 ✓ for inclusion in the Fusion Energy Sciences long-range R&D plan
 → report due out Jan/2018
- ⇔ proposed time line:
 - funding in FY'19 (Oct'18) for **TR-3** (*Technical Readiness Level 3*):
 - the beginning of an official DOE-FES "project"
 - → initial designs and cost analysis of each major subsystem
 - funding for 3 years beginning in FY'20 (Oct'19) to reach **TR-6**:
 - \rightarrow construction of an optimized ³He polarizer and commissioning at DIII-D
 - → construction of (ICF-like) systems for rapid pellet permeation
 - → development of ancillary equipment to polarize HD and transport to DIII-D
 - → retrofit existing cryo-pellet launchers and guide tubes for polarized pellets
 - → DIII-D optimization of high-T_{ion} Hydrogen plasmas & vertical fuel injection
 - → build and install proton detector array to map poloidal distribution in DIII-D

➔ 1st in situ SPF measurements in 2022

extras

spin-dependent ³He+D $\rightarrow \alpha$ +p (or T+D $\rightarrow \alpha$ +n) angular distributions

- polar (pitch) angles relative to local magnetic field direction
- neglecting interference terms (good to ~ 2-3 %)

$$\frac{d\sigma}{d\Omega_{cm}} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left\{1 - \frac{1}{2}P_D^V P_{_{3}_{He}} + \frac{1}{2}\left[3P_D^V P_{_{3}_{He}}\sin^2\theta + \frac{1}{2}P_D^T \left(1 - 3\cos^2\theta\right)\right]\right\}$$

•
$$P_D^V = n_D^{+1} - n_D^{-1} \in [-1, +1]$$

• $P_D^T = n_D^{+1} + n_D^{-1} - 2n_D^0 \in [-2, +1]$
• $P_{3_{He}} = n_{He}^{+\frac{1}{2}} - n_{He}^{-\frac{1}{2}} \in [-1, +1]$

→ angle integrated cross section :

$$\sigma_{cm} = \sigma_0 \left\{ 1 + \frac{1}{2} \vec{P}_D^V \cdot \vec{P}_{_{3}_{He}} \right\}$$

