<u>Spin-polarized hydrogen</u> isotopes from <u>UV molecular photodissociation</u>, and nuclear-spin-polarized molecules from <u>IR rovibrational excitation</u> followed by

hyperfine beating

Department of Physics, University of Crete and IESL-FORTH

Institute of Electronic Structure and Laser Foundation for Research and Technology - Hellas

Optical Methods of SPH production

• Optical-pumping Limited mainly to alkali atoms

Rb polarization can approach 100%

Closed Transition lifetime ~20 ns

795 nm

Direct Optical Pumping of H at 121.6 nm

Spin-exchange Optical Pumping of SPH

• Optical-pumping Limited mainly to alkali atoms (and noble gases and SPH via Spin-exchange optical pumping)

Direct Optical Pumping of molecules

Internuclear separation

Optical Pumping in molecules not possible:

- 1) UV transitions are open
- 2) IR transitions go to states with long lifetimes (ms)

Despite failure of optical pumping, we show how SINGE-PHOTON EXCITATION can still make SPH with up to 100% polarization

We will consider 2 methods:1) UV excitation (photodissociation)2) IR (rovibrational) excitation

... followed by hyperfine beating to polarize the nuclei

Pulsed IR rovibrational excitation

Polarizing molecular rotation (instead of electronic spin):

T. Peter Rakitzis, Phys. Rev. Lett. 94, 83005 (2005).

Pulsed Excitation of H₂

Pump-Probe (IR-UV) setup for measurement of hyperfine beating

Pulsed Excitation of HCI

Hyperfine beating in HD and D₂

Conclusions I

1) Rovibrational excitation of diatomic molecules, to produce rotational Polarization, which is then transferred to the nuclear spin through Hyperfine beating, has been demonstrated for HCl, HD, D_2 , and calculated for HF/DF.

2) Appropriate lasers IR exist with $>10^{22}$ photons/s.

3) Large production rates of spin-polarized nuclei may be possible.Perhaps spin-polarized molecules can be stored at surfaces.

<u>Advantages</u>

- high-density (stable molecules, e.g. DI, DF, at high pressure)
- not limited to alkali gases
- can produce highly polarized photofragments
- short timescales of production (ns-fs)
- Transitions in UV-IR, where powerful lasers exist (> 10^{22} phot/s)
- Efficient: 1 photon \rightarrow 1 polarized D

<u>Can the photon helicity be transferred</u> <u>to atoms via photodissociation?</u>

$$S_{photon} = 1$$

m = +1
Circularly Polarized Light

$$S_{\rm H} = 1/2$$

 $m_{\rm H} = \pm 1/2$
Circularly Polarized Matter

General Idea

Adiabatic correlation of molecular electronic states to specific atomic m states van Brunt and Zare, J. Chem. Phys. 48, 4304 (1968).

$$AB(\Omega_g) + hf \rightarrow AB(\Omega_i) \rightarrow A(J_A, m_A) + B(J_B, m_B)$$

A Search of the Literature Shows:

All channels via (predominantly) Perpendicular Transitions ($\Delta \Omega = \pm 1$)!

[1] J. Zhang, M. Dulligan, C. Wittig, J. Chem. Phys. 107, 1403 (1997)
[2] R. Baumfalk, U. Buck, C. Frischkorn, N. Nahler, L. Hüwel, J. Chem. Phys. 111, 2595 (1999)

Now, do experiment to detect SPH

<u>BUT</u>, we didn't know how to detect the SPH with lasers.

For H, ionization schemes are not

significiantly sensitive to polarization

(spin-orbit splitting much smaller than Doppler spread, and coupling time much slower than ionization time)

"Temporary" solution:

Detect Cl or Br cofragment polarization, andinfer H polarization from conservation ofangular momentumXH

Slice Imaging Spectrometer

<u>HC1 \rightarrow H + Cl (J=1/2)</u>

RR

 $\frac{I_{RCP}}{I_{LCP}} = 1.8 \pm 0.2$

RL

<u>HCl \rightarrow H + <u>Cl (J=3/2)</u></u>

RR

 $\frac{I_{RCP}}{I_{LCP}} = 1.4 \pm 0.2$

CI polarization from HCI photodissociation at 193 nm

(Diatomics understood)

<u>HBr \rightarrow H + **Br** (J=1/2)</u>

RR

 $\frac{I_{RCP}}{I_{LCP}} = 2.0 \pm 0.2$

RL

<u>HBr \rightarrow H + **Br** (J=3/2)</u>

RR

 $\frac{I_{RCP}}{I_{LCP}} = 1.6 \pm 0.2$

RL

HBr Photodissociation at 193nm Rakitzis et al., JCP, 121, 7222 (2004).

Results (along photolysis polarization)

Unsatisfying that H-atom detection is not direct...

Can the SPH be seen directly?

Selection Rules (one-photon dipole transition) $\Delta m=0$ and $\Delta m=\pm 1$ NOT with same axis (linearly p.l.) (circularly p.l.)

SPH fluorescence detection

T.P. Rakitzis, *ChemPhysChem*, **5**, 1489 (2004).

Advantages:

ges: 1) Hyperfine resolution not necessary
2) Sensitive to SPH velocity (Doppler shift)
3) Detect on nanosecond timescale
4) Very sensitive

Experimental Setup

VUV $\lambda/4$ plate

VUV polarizer Interaction region

Theory: Brown & co., JPC.A., 108 (2004) 7790; 110 (2006) 5371.

SPH production at BNL (current density record)

SPH production and detection on Crete

"Single-molecule Stern-Gerlach Spin-Separator"

Only recently we extended this work to production of spin-polarized D (SPD):

I(²P_{3/2}) polarization from DI photodissociation at 270 nm

Linearly polarized geometries

I(²P_{3/2}) polarization from DI photodissociation at 270 nm

• D atoms highly electron spin polarized (~100%)

Theory for D and H polarization from DI and HCI photodissociation

Alex Brown et al.

J. Chem. Phys. 122, 084301 (2005)

J. Phys. Chem. A 2004, 108, 7790

I(²P_{3/2}) and D(²S_{1/2}) polarized OPPOSITELY

D nucleus polarized 60% after 1.6 ns (hyperfine beating)

Photolysis laser pulse should be < 1 ns

100% polarized H⁺ or T⁺, and 60% polarized D⁺ can be produced, if:

1) Photodissociation of hydrogen halide happens at correct wavelength, where electron polarization is 100%.

2) Bond of hydrogen halide is aligned parallel to laser polarization, or only those recoiling atoms are selected

3) Timing between photodissociation and ionization lasers allows 100% transfer of polarization from electron to nuclear spin (half the hyperfine beating period). <u>Pump-probe polarized Fusion</u> (D-D, and D-³He or D-T)

National Ignition Facility (NIF, Livermore CA

Measurement of O₂ electron spin polarization at 2.7 x 10¹⁹ cm⁻³

V. Milner "Ultrafast magnetization of a dense molecular gas with an optical centrifuge" PRL (2017)

Conclusions II

1) Spin-polarized H/D/T can be produced from hydrogen halide photodissociation.

2) More work is needed for H/D/T halides (F, Cl, Br, I) and at different laser wavelengths (157-300 nm), to see when polarization is maximal (hopefully near 100%).

Conclusions

- Spin-polarized H/D/T can be produced using two methods using molecules:
- 1) UV photodissociation

Perhaps both methods can be combined

(high densities, production rates)

2) IR rovibrational excitation

(high production rates, high D polarization, high P_{zz} polarization)

• Appropriate lasers in the UV and IR exist with $>10^{22}$ photons/s;

Can ionization methods keep up?

• These methods should be considered for many applications in spin physics, including those discussed here!

Acknowledgements

Dimitris Sofikitis George Katsoprinakis Alexandros Spiliotis Lykourgos Bougas

Alexander Andreev (Berlin) Petros Samartzis (FORTH)

Funded by:

- ERC Starting grant
- 2 ERC Proof-of-Concept grants
- Marie Curie IAPP
- H2020 FET

IESL-FORTH and University of Crete

European Research Council

