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Abstract

The level of precision expected by future cosmic microwave background experiments makes
it necessary to refine the techniques used to analyse the data. It becomes essential to
understand how to maximise their information content. This can be done, either by
developing techniques to reduce the noise level present in the data or by systematically
studying the significance of different observations for a given model. In addition, it is
possible to define new estimators to test their statistical properties. In this thesis, we
initially show how it is possible to construct a pixel-based dataset that combines the
WMAP and low-frequency Planck large-scale polarization maps. After demonstrating its
robustness, we derive constraints on the optical depth obtaining τ = 0.069+0.012

−0.011 (68%
CL). Adding small-scale data, BAO and lensing we find τ = 0.0714+0.0087

−0.0096 (68% CL).
As a further topic, we show how it is possible to define new estimators to study the
correlation between the orientation of the Galactic plane and the low-variance anomaly
shown by large angle CMB temperature data. Through the use of random rotations, we
show the stability of this anomaly at high Galactic latitudes, finding a significance of ∼ 3σ.
Finally, we compare two main observables in CMB experiments: lensing and large-scale
polarization. We show how the information carried by these two probes affects our ability
to constrain the base ΛCDM parameters. We extend the analyses considering also some
of its most debated extensions, quantifying which future probe will play a crucial role in
their characterisation.
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Sommario

Il livello di precisione atteso dai futuri esperimenti sulla radiazione cosmica di fondo rende
necessario il perfezionamento delle tecniche utilizzate per analizzare i dati. Diviene indis-
pensabile capire come massimizzare il loro contenuto informativo. Questo può essere fatto
sia sviluppando tecniche per ridurre del livello di rumore presente nei dati, sia tramite lo
studio sistematico della significatività delle diverse osservazioni per un determinato mod-
ello. In aggiunta, è possibile definire nuovi estimatori per testarne le proprietà statistiche.
In questo lavoro di tesi, inizialmente mostriamo come sia possibile costruire un dataset
nello spazio dei pixel che combini le mappe di polarizzazione su larga scala ottenute dalle
misure a bassa frequenza di WMAP e Planck. Dopo averne dimostrato la robustezza, de-
riviamo i vincoli sullo spessore ottico ottenendo un valore pari a τ = 0.069+0.012

−0.011 (68% CL).
Aggiungendo misure derivanti dalle piccole scale, BAO e lensing troviamo un valore pari a
τ = 0.0714+0.0087

−0.0096 (68% CL). Come ulteriore argomento, facciamo vedere come sia possibile
definire nuovi estimatori per studiare la correlazione tra l’orientazione del piano Galattico
e l’abbassamento anomalo della varianza visto nei dati di temperatura della CMB su larga
scala angolare. Tramite l’uso di rotazioni random mostriamo la stabilità di questa anoma-
lia ad alte latitudini Galattiche, trovando una significatività di ∼ 3σ. Infine, compariamo
due osservabili principali negli esperimenti di CMB: quella del lensing e quella della po-
larizzazione su larga scala. Mostriamo come l’informazione contenuta in queste due sonde
influenzi la nostra capacità di vincolare i parametri base del modello ΛCDM. Estendiamo
l’analisi considerando anche alcune delle sue estensioni più dibattute, quantificando quale
sarà la sonda che giocherà un ruolo cruciale nella loro caratterizzazione.
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Introduction

The Michelson and Morley experiment in 1887 marked the change in our perception of
the Universe. They found that the speed of light is independent of reference frame used
to measure it. This result radically changed the human beliefs about the laws of nature.
However, a coherent formulation of a cosmological theory had to wait until the beginning of
the 20th century. The mathematical formalism that describes the gravitational framework
of the Universe came to life only in 1915, with the formulation of General Relativity by
A. Einstein. Nevertheless, only with the implicit hypothesis that on a large scale, for any
observer, the Universe appears isotropic and homogeneous, can the foundations be laid for
any cosmological model. This statement was formally named and formalised by Edward
Milne only in the 1930s.

Although the establishment of a new mathematical formalism, nobody could predict
the number of scientific discoveries that would come shortly. The years that followed were
a succession of predictions and experimental confirmations. In the twenties, A. Friedmann
finds a solution to the Einstein equations, which suggests an expansion of space. A few
years later, G. Lemaitre comes independently to the same conclusion, showing a relation
between its solutions and the recession of nearby galaxies. In the same decade, E. Hubble
shows that galaxies are moving away from the Earth, confirming the expansion of the
Universe. In the late 1940s, G. Gamow formulates the theory of “Big Bang”, which
explains, in a rapidly expanding and cooling universe, the synthesis of light elements. And
there were also many others. But what pushed physicists into space was the accidental
discovery of an omnidirectional, homogeneous and isotropic noise in the microwave bands,
whose power was consistent with a black body with a temperature around 3 K, by Arno
Penzias and Robert Wilson in 1964.

This observation paved the way for a sequence of space-borne missions such as COBE
(1989-1992), WMAP (2001-2008), Planck (2009-2018), and more than a dozen other sub-
orbital experiments (e.g., BICEP, Keck Array, ACT, Spider). This rapid series of exper-
iments transformed cosmology into a precision science, allowing for the studying of the
tiny anisotropies in the temperature and polarization of the Cosmic Microwave Background
radiation (CMB). The new generation of ground-based experiments (e.g., Simons Obser-
vatory), the balloon experiments (LSPE, Piper), and the future space missions (COrE,
LiteBIRD, Pixie) are going to increase the precision of the observations, in particular for
the polarised anisotropies which constitute a pool of information to test the inflationary
era and put constraints on several parameters of non-standard physics.

All the promised achievements promote two sides of the same coin. If on the one side
we are going through an increasing precision era of the observations, on the other side, we
are going to face the increase of the amount of data. As a consequence of this, more effort
is required in the development of analysis techniques.

In this PhD thesis, we are going to present three applications of statistical analyses
techniques on CMB data. To this purpose, one needs an introduction of the formalism
that allows us to characterise the CMB fluctuations, to quantify information from data,
and to forecast errors on cosmological parameters from a future experiment. The thesis is
structured as follows. In Chapter 1, we review the basics of the currently-accepted Stan-

3



CONTENTS 4

dard Model of Cosmology. We describe the homogeneous background parametrisation,
reviewing the thermal history of the Universe and highlighting the connections between
Inflation and the CMB radiation. In Chapter 2, we move our attention to the CMB, which
is the main observable used in this thesis. We describe the methods commonly used in
CMB cosmology for isotropic Gaussian random fields, characterising both temperature
and polarization anisotropies. We briefly review the fingerprint of reionization on CMB
and highlights the choice for cosmological parameters. In Chapter 3, we review some con-
cepts of data analysis techniques, focussing the attention on three different frameworks
in which interpreting probability. In Chapter 4, we start to present one of the original
work of this thesis. We present a novel CMB polarization likelihood package for large
angular scales built from combined WMAP and Planck LFI legacy maps. The content of
this chapter was accepted on 29 July 2020 in the Astronomy & Astrophysics journal and
produced by the work in collaboration with L. Pagano, M. Lattanzi, M. Migliaccio, L. P.
Colombo, A. Gruppuso, P. Natoli, and G. Polenta (Natale et al. 2020). In Chapter 5, we
analyse the low-variance anomaly, that is a feature of the CMB temperature anisotropy
pattern present in both WMAP and Planck data, which results to be dependent from the
high Galactic latitude data. The content of this chapter was published on 17 December
2019 in the JCAP journal and produced by the work in collaboration with A. Gruppuso,
D. Molinari and P. Natoli (Natale et al. 2019). In Chapter 6, we apply some Informa-
tion Theory-based concepts to study the effects of the experimental-setup improvement on
different cosmological parameter. In particular, we focus on the comparison between the
information carried by lensing and large scale polarization measurements. We perform this
analyses in both the standard cosmological model and some of its extensions. The content
of this chapter is a work in preparation produced in collaboration with A. Gruppuso, M.
Lattanzi, P. Natoli, L. Pagano, and myself.



Chapter 1

Standard cosmological model

The standard cosmological model (SCM), as we know it today, is the result of years
of theoretical insights and observation. Nevertheless, it is possible to date its starting
point with the formulation of General Relativity (GR) by A. Einstein, in 1915. The
GR represents the mathematical framework that describes the connection between the
geometry of the Universe and its energy content. The space-time geometry is identified by
a four-dimensional pseudo-Riemannian manifold M with metric g. The connection with
its energy content is determined through a set of differential field equations

Gµν = Rµν −
1
2gµνR = 8πGTµν + Λgµν . (1.1)

Here c = ~ = 1, G is the universal constant of gravitation, Tµν is the energy momentum
tensor, Λ is the cosmological constant1, and Gµν is the Einstein tensor, in which appear
the Ricci tensor Rµν and the Ricci scalar R.

Despite the beauty of this mathematical formulation, this set of field equations alone
are not enough to determine the evolution of a gravitational system in many cases. How-
ever, with some peculiar assumptions, they admit an elegant solution that represents the
building block of modern cosmology. This assumption states that on large scales, and for
any observer, the Universe appears to be isotropic and homogeneous (Durrer 2008; Carroll
2019). Homogeneity is the property of being identical everywhere in space, while isotropy
is the property of looking the same in every direction. This is often called the cosmological
principle: the universe looks statistically the same in all directions and no direction should
be distinguished. One can argue on the validity of this statement if we limit the attention
at our galaxy and the nearby Universe. However, observations on scales larger than ∼
100 Mpc (where 1 Mpc = 3.086 × 1022 m, or equivalently 1 Mpc = 3.2615 × 106 light
years) all show isotropy and homogeneity (Mukhanov 2005; Hogg et al. 2005; Pandey and
Sarkar 2015). This implicitly push the cosmologists to define homogeneity in an average
sense, where the Universe is taken to be identical in different places when one looks at
sufficiently large pieces.

These two basic assumptions allow us to slice the space-time into homogeneous and
isotropic 3-dimensional hyper-surfaces characterized by a time coordinate t, called the
cosmic time or proper time. All these hyper-surfaces are such that the 3-spaces of constant
time, Σt = {x|(x, t) ∈ M}, are maximally symmetric spaces, hence spaces of constant
curvature. Therefore, the metric g takes the form

ds2 = gµνdx
µdxν = −dt2 + a2(t)σKij dxidxj , (1.2)

1Einstein originally introduced the concept in 1917 to counterbalance the effects of gravity and achieve
a static Universe. Today is used in the current standard model of cosmology to parametrize the dark-energy.
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CHAPTER 1. STANDARD COSMOLOGICAL MODEL 6

where a(t) is the scale factor, which measure the expansion rate of the Universe. In other
word, the scaling factor tell us how large the space-like slice Σt is at the moment t. The
coordinate used here are known as comoving coordinates, and σKij is the spatial part of the
metric of constant curvature K. Depending on the sign of K this space is locally isometric
to a 3-sphere (K > 0), a three dimensional pseudo-sphere (K < 0) or flat Euclidean space
(K = 0). We shall usually normalise the scale factor such that a(t0) = a0 = 1, today t0.
Note that, sometime, when K , 0, the scale factor is normalised such that K = ±1. In
this case, we have no normalisation constant left and a0 has the dimension of a length.
The form of the metric σKij that we often use is given in polar coordinate (r, θ, φ), and
takes the form

σKij dx
idxj = dr2

1−Kr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1.3)

Inserted in Eq. (1.2), it constitutes the Friedman-Lemâıtre-Robertson-Walker metric (FLRW).
It will sometimes be useful to change the time variable we use from proper time to con-
formal time

η =
∫

dt

a(t) , (1.4)

from which the FLRW metric becomes

ds2 = a2(η)
[
−dη2 + dr2

1−Kr2 + r2
(
dθ2 + sin2 θdφ2

)]
. (1.5)

This metric is often expressed as

ds2 = a2(η)
[
−dη2 + dr2 + χ(r)2

(
dθ2 + sin2 θdφ2

)]
, (1.6)

where

χ(r) =


r in the Euclidean case, K = 0

1√
K

sin
(√

Kr
)

in the spherical case, K > 0
1√
|K|

sinh
(√
|K|r

)
in the hyperbolic case, K < 0

. (1.7)

1.1 Homogeneous background

Imposing the validity of the cosmological principle, we are allowed to plug the FLRW met-
ric into Einstein’s equations. This choice allows us to find a simplified form of the Eq. (1.1)
suitable for an homogeneous and unperturbed Universe. This solution characterises the
evolution of the background. As a first step, we can observe that, due to the symmetry
of spacetime, one can safely make the assumption that the content of the universe is a
perfect fluid, fully described by its energy-momentum tensor

Tµν = (ρ(t) + P (t))uµuν + P (t)gµν , (1.8)

where ρ and P represent, respectively, the fluid energy density and pressure. In the case
in which more species are present in the Universe we have

P =
∑
i

Pi (1.9)

ρ =
∑
i

ρi . (1.10)

The four-vector uµ, instead, is the four-velocity in a frame that is comoving with the fluid,
defined as

uµ ≡ (1, 0, 0, 0) , (1.11)
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whit the normalisation condition uµu
µ = −1.

Collecting these results in Eq. (1.1), we find the three (dependent) solutions for the
Einstein equations

H2 ≡
(
ȧ

a

)2
= 8πG

3 ρ+ Λ
3 −

K

a2 . (1.12)

ä

a
= −4πG

3 (ρ+ 3P ) + Λ
3 , (1.13)

ρ̇ = −3H (ρ+ P ) . (1.14)

Here Eq. (1.12) comes from the time-time component, G00, Eq. (1.13) comes from the
space-space component, Gij , and Eq. (1.14) follows from the time component of the Bianchi
identity ∇µTµν = 0, where ∇µ is the covariant derivative (see, e.g. Carroll 2019). This
set of three equations are known as Friedmann equations. Here H is the Hubble function,
usually defined in terms of the dimensionless Hubble parameter h as

H = 100h km s−1 Mpc−1 . (1.15)

These equation are not independent. Precisely, we have two independent equations
and one dependent from the other. Thus we are facing a problem in which we have two
equations and three unknowns, (ρ, P, a). To overcome this issue, we can assume a constant
equation of state,

w = P

ρ
= const. , (1.16)

to solve Eq. (1.14). The resulting form for the energy density parameter is

ρ(t) = ρ0a(t)−3(1+w) , (1.17)

where ρ0 denotes the value of the energy density at present time, t0 (we are imposing
a0 = 1). Having this set of equations we can analyse one by one the contributions of the
different constituents of the Universe. In particular, relying on current observations (see,
e.g., Planck Collaboration VI 2018), we can classify the different energy densities into three
main families: non-relativistic matter having wm = 0 (baryon, dark matter), relativistic
matter with wr = 1/3 (photons, light neutrinos) and fluids having negative pressure with
wΛ = −1 (dark energy in the form of a Cosmological constant). This classification, due
to the scaling dependency outlined in Eq. (1.17), allows us to identify three different era,
in which a single component dominates. Precisely, in a universe dominated by radiation
with Λ = 0 we have

ρr(t) = ρr, 0ar(t)−4 . (1.18)

In a universe dominated by pressureless matter with Λ = 0 we have

ρm(t) = ρm, 0am(t)−3 . (1.19)

In a universe dominated by cosmological constant

ρΛ(t) = ρΛ, 0 = const. . (1.20)

1.1.1 Parametrisation of the homogeneous background

The previous classification, in which each component is treated individually, represents
a huge simplification. Indeed, even if it is possible to distinguish between the different
single-component-dominated era, a rigorous analysis cannot exclude the subdominant con-
tribution to the energy content of the Universe. We need an equation that describes the
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expanding homogeneous Universe, which has an explicit dependence from the different
components present today (t = t0) in the Universe. A useful quantity that can be used to
properly take into account each component is the density parameter for each species Ω,
defined as the ratio

Ω(t) = ρ(t)
ρc

, (1.21)

where ρc is the critical density

ρc = 3H2

8πG . (1.22)

The critical density is defined as the density necessary to have a flat universe. Thus,
manipulating Eq. (1.12), and defining

Ωk = − 3K
8πGa2ρc

, ΩΛ = Λ
8πGρc

, (1.23)

for the different components of the Universe, we have

H(t) = H0

√∑
i

Ωi, 0a−3(1+wi)(t) + Ωk, 0a−2(t) + ΩΛ, 0 , (1.24)

where H0 is the Hubble constant, H(t = t0). Here we implicitly separate the contributions
of different components to the total density, see Eq. (1.10). The Hubble function H(t)
measures the expansion rate at any particular time t for any model obeying the Cosmo-
logical Principle. The Eq. (1.24) shows how it vary with time in a way that depends upon
the contents of the Universe today. That is, the Eq. (1.24) represents the equation we
are looking for. It is important to observe that, since Ωk ∝ a−2, the curvature is always
negligible in the early universe because a is a monotonic function of time. Furthermore,
evaluating Eq. (1.24) for t = t0 we have

1 =
∑
i

Ωi, 0 + Ωk, 0 + ΩΛ, 0 , (1.25)

which imply that, for a spatially flat Universe (K = 0) ρ0 = ρc, i.e. the definition of
critical density.

As we mention above, current observations (see, e.g., Planck Collaboration VI 2018)
show that the best-fitting picture for describing the statistics of the Universe on large
scales is a model in which the matter is mostly cold and dark (i.e. effectively collisionless
and with no electromagnetic interactions, CDM), with the bulk of the energy density of
the Universe behaving like vacuum energy (i.e. like the cosmological constant of general
relativity, Λ), and, for this reason, it is known as ΛCDM model. Within this context, we
can rewrite Eq. (1.24) in a more explicit form by using the equations of state for each
component. Removing the subscript to the density parameter, this leads to

H2(z) = H2
0

[
Ωr(z + 1)4 + Ωm(1 + z)3 + Ωk(z + 1)2 + ΩΛ

]
, (1.26)

where we used the definition of cosmological redshift 1 + z = 1/a, which is directly linked
to the measurable Doppler shift of spectral lines of objects in the sky via z = ∆λ/λ0.
Note that, since the Hubble constant is used as the unit of measurement to describe the
expansion of the Universe, the cosmological parameters that enter in Eq. (1.26) can be
interpreted as the five parameters determining the background homogeneous spacetime.
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1.2 Thermal history of the Universe

As we have seen, according to the Friedmann equations, the expansion rate of the universe
is determined by the energy density and equation of state of its constituents. When we go
back in time, from Eqs. (1.18)-(1.20), we can see that the dark energy density has a negli-
gible impact on the dynamics of the universe, leaving space to the cold matter-dominated
era. Even if dark-energy cannot begin to dominate too early, because a substantial period
of matter domination is needed for structure formation, we know that there is this phase
transition in the history of the Universe. Going back further, we have a period in which the
Universe was radiation-dominated. This is characterised by an equation of state P = wρ
(w = 1/3), that inserted in Eq. (1.13), assuming Λ = 0, imply that the second derivative
of the scaling factor a(t) is negative, that is, a(t) is a concave curve. Thus, we expect
the scale factor of the Universe to cross the a = 0 line in a finite amount of time. The
moment when this happens is called the Big Bang, which represents a singularity in the
coordinates (the spatial metric vanishes for a = 0), in the Ricci scalar, and in the density.

Even if we can identify this epoch in which radiation dominates, to properly describe
the physical processes in an expanding universe we need, strictly speaking, a full kinetic
theory. Fortunately, the situation greatly simplifies in the very early universe, when the
particles are in a state of local equilibrium with each other, where by local equilibrium we
simply mean that matter has maximal possible entropy. If within a typical cosmological
time the particles scatter from each other many times, their entropy reaches the maximal
possible value before the size of the universe changes significantly. Thus, even if the system
is far from equilibrium, we can describe it through its entropy (always definable and not-
decreasing). This state of local equilibrium is then characterised by comparison between
the collision time and the expansion time. Precisely, defining the reaction rate, Γ = σnv,
where σ is the cross-section of the process, n is the number density of the particles and v
is their relative velocity, the time that establish equilibrium (the collision time) is

tc ∼
1
σnv

. (1.27)

Since the expansion time is given by tH ∼ 1/H, and local equilibrium is reached before
expansion becomes relevant, the condition for local equilibrium translates in

tc << tH . (1.28)

This condition implies that the entropy per comoving volume elements remain constant,
ie the expansion is adiabatic. From the second law of thermodynamics:

dS = dE + PdV

T
= d(ρ(T )V ) + P (T )dV

T
= 1
T

[
∂S

∂V
dV + ∂S

∂T
dT

]
, (1.29)

where
∂S

∂V
= P (T ) + ρ(T )

T
,

∂S

∂T
= V

T

dρ

dT
. (1.30)

Since the entropy is a differentiable function, the Schwarz condition

∂2S

∂V ∂T
= ∂2S

∂T∂V
, (1.31)

holds. That is,

∂

∂T

[
P (T ) + ρ(T )

T

]
= ∂

∂V

[
V

T

dρ

dT

]
⇒ dP

dT
= P (T ) + ρ(T )

T
, (1.32)
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that relates the energy density and the pressure. Using this relation we get

dS = 1
T
d[(ρ+ P )V ]− V

T
dP = 1

T
d[(ρ+ P )V ]− V

T 2 [P + ρ] dT , (1.33)

that is
dS = d

[(P + ρ)V
T

+ const.
]
. (1.34)

From the Friedmann Eq. (1.14)

a3Ṗ = d

dt

[
a3 (ρ+ P )

]
, (1.35)

and the energy density and the pressure relation follows the definition of the conserved
quantity

d

dt

[
a3

T
(ρ+ P )

]
= 0 . (1.36)

But it is easy to see that, defining the density entropy s = S/V , the quantity in the square
bracket is exactly the entropy per comoving volume, that is

d

dt

[
a3

T
(ρ+ P )

]
= d

dt

[
a3s
]

= 0 . (1.37)

The entropy density is dominated by the contribution of relativistic particles, so that,
since the total radiation density can be written as

ρr = π2

30T
4

∑
i=b

gi

(
Ti
T

)4
+ 7

8
∑
i=f

gi

(
Ti
T

)4
 = π2

30T
4g∗ , (1.38)

where the b index stays for bosons while f for fermions, and gi is the internal degrees of
freedom, using again the equation of state P = wρ, we get

s = 2π2

45 g∗S(T )T 3 . (1.39)

Here
g∗S(T ) =

∑
i=b

gi

(
Ti
T

)3
+ 7

8
∑
i=f

gi

(
Ti
T

)3
. (1.40)

If all the relativistic species are in thermal (local) equilibrium, g∗ = g∗S . Note that, the
entropy in a comoving volume is S = sa3 ∝ a3T 3, which implies that the temperature is
a decreasing function with respect to the expansion of the universe

T ∝ a−1 . (1.41)

What we have computed so far is valid as long as the speed of the interactions between
the particles is greater than or equal to the Hubble parameter, and then the conditions of
thermal equilibrium are maintained. If, instead, Γ < H the species considered decouples
from plasma. Thus, fixing the range of temperature, we can identify different transitions
that characterise the thermal history of our Universe. Precisely (see, e.g. Ellis et al. 2012):

– Planck Era (T ∼ 1019 GeV - t ∼ 10−43 s) Near the Planckian scale, general rela-
tivity can no longer be trusted, even if at energies slightly below this scale classical
spacetime still makes sense. At this energy, we expect that GR breaks down and
gravity should become a quantum interaction. Non-perturbative quantum gravity
dominates.
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– Grand Unification Theory (T ∼ 1016 GeV - t ∼ 10−36 s) There is no reason
to expect that non-perturbative quantum gravity plays any significant role below
1019 GeV. Therefore, we can still use General Relativity to describe the dynamics of
the universe. The main uncertainty here is the matter composition of the universe.
There are candidate Grand Unified Theories (GUT), mainly based on supersymme-
try, which relates bosons to fermions, so that each fermion has a boson superpartner,
and vice versa. There are good reasons to expect that a Grand Unification of the
electroweak and strong interactions takes place at energies about 1016 GeV

– Inflation & reheating (T . 1015 GeV - t & 10−34 s) Currently the most successful
phenomenology we have for understanding the very early universe is inflation, which
is discussed in the following section. This is typically expected to take place at an
energy scale 1015 GeV. Inflation provides a framework for understanding how the
apparently causally disconnected regions of the observable universe happen to have
the same temperature, and it also predicts the generation of fluctuations that seed
the growth of large-scale structure.

– Baryogenesis (T > 1 TeV - t < 10−10 s) At the end of inflation, the observable uni-
verse is cold and essentially empty of matter: the universe is reheated and populated
with particles via the decay of the inflaton field. Between reheating and the elec-
troweak transition, a number of crucial processes are expected to occur, all of them
beyond the reach of the Standard Model of particle physics, and all remaining uncer-
tain at the time of writing. They include the problem of identifying the dark matter
particle and the problem of baryogenesis. Baryogenesis is one of the major problems
in cosmology, and consists in accounting for the matter/anti-matter asymmetry, i.e.
the fact that we only observe matter in stars and galaxies (apart from high-energy
collisions that can produce anti-particles, which rapidly annihilate). That is, the
problem of baryogenesis consists in finding a mechanism that generated a baryon
asymmetry which led to the baryonic structures that we observe.

– Electroweak transition (T ∼ 0.1 − 1 TeV - t ∼ 10−10 s) The temperature of
the universe falls below values which correspond to energies of the mass of bosons
mediators of the weak interactions Z0, W±, the electromagnetic force is separated
from the weak.

– Quark-gluon transition (T ∼200 MeV - t ∼ 10−5 s) The quark-gluon transition
takes place: free quarks and gluons become confined within baryons and mesons.

– Neutrino decoupling (T ∼ 1 MeV - t ∼ 1 s) The primordial neutrinos decouple
from the other particles and propagate without further scatterings.

– Electron-positron annihilation (T ∼ 0.5 MeV - t ∼ 1 s) The typical energy
at this time is of order the electron mass. The numerous electron-positron pairs
present in the very early universe begin to annihilate when the temperature drops
below their rest mass and only a small excess of electrons over positrons, roughly one
per billion photons, survives after annihilation. The photons produced are in thermal
equilibrium and the radiation temperature increases compared to the temperature
of neutrinos, which decoupled earlier.

– Nucleosynthesis (T ∼ 0.05 MeV - t ∼ 200 s) Nuclear reactions become efficient
at this temperature. As a result, free protons and neutrons form helium and other
light elements. The abundances of the light elements resulting from primordial
nucleosynthesis are in very good agreement with available observation data and this
strongly supports our understanding of the universe?s evolution back to the first
second after the big bang.
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– Matter-radiation equality (T ∼ eV - t ∼ 1011 s) This time corresponds to matter-
radiation equality which separates the radiation-dominated epoch from the matter-
dominated epoch. The exact value of the cosmological time at equality depends on
the constituents of the dark component and, therefore, is known at present only up
to a numerical factor of order unity.

– Recombination (T ∼ 0.25 eV - t ∼ 1012 s) After nucleosynthesis, the main ingre-
dients of the cosmic plasma are γ, e, p ≡ H+ and fully ionized helium, He2+ (other
ionized light nuclei play a negligible role). Photons are strongly coupled to baryons
via Thomson (e− γ ) and Coulomb (p− e) interactions. As the temperature drops,
the ionised nuclei begin to capture free electrons. For T . 5000 K, the reaction
p+ e ↔ H + γ keeps the plasma in equilibrium. As the temperature drops further,
this interaction becomes less effective, and the probability grows of electrons being
captured by protons to form hydrogen. The universe becomes transparent to the
background radiation.

– The Dark Ages and the epoch of reionization (T < O(1) eV - t ∼ 1012 − 1015

s) After recombination, the baryonic matter is effectively all in the form of neutral
hydrogen and helium. From the decoupling redshift of z = 1100 down to a redshift
z ∼ 200, the gas temperature follows the Cosmic Microwave Background (CMB)
temperature field2 since the residual ionisation, although very small, is enough to
maintain sufficient coupling via Compton scattering (Ellis et al. 2012)

Tgas = Tγ = Tγ 0(1 + z) , z ∼ 200 . (1.42)

Expansion and cooling eventually break this coupling and the gas temperature drops
below the CMB temperature, evolving adiabatically as

Tgas ∝ (1 + z)2 , 200 & z & 20 . (1.43)

For z . 20, the gas begins to be heated by emissions from the first stars, and even-
tually exceeds the CMB temperature. After recombination, the baryonic pressure
drops towards zero and gravity overcomes the counterbalancing effect of pressure.
The baryonic gas falls into dark matter haloes, and overdensities grow as δ ∼ a.
Because of the weakness of gravitational instability in an expanding background,
it takes of the order of a few 100 Myr before the first stars form. Thus there is a
period after recombination, the so-called Dark Ages, when baryonic matter is dark.
The “backlight” of the CMB radiation leads to emission and absorption features of
the neutral hydrogen 21 cm hyperfine spin flip transition. Ionizing radiation from
luminous sources convert the cold and neutral gas into a warm and highly ionised
medium, starting the epoch of reionization.

1.3 Inflationary paradigm

The standard cosmological model that we have described so far is in great agreement with
current observations. With the proper choice of the initial conditions, both the anisotropy
seen in the CMB temperature field, that the Large Scale Structure (LSS) are predicted by
the ΛCDM model. These initial conditions are not arbitrary. Indeed, not only these are
chosen in such a way to reproduce the structures that we observe today in the Universe,
but also to face certain puzzling features of a decelerating early universe: e.g. the horizon
problem and the flatness problem.

2See Chapter 2 for further details.
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Figure 1.1: Conformal diagram of Big Bang cosmology. Here τ is the conformal time. Each spacetime point in the
conformal diagram has an associated past light cone which defines its causal past. Two points on a given constant
τ -surface are in causal contact if their past light cones intersect at the Big Bang, τi = 0. This means that the surface
of last-scattering (τrec) consisted of many causally disconnected regions that won’t be in thermal equilibrium. This
diagram makes the horizon problem evident since the uniformity of the CMB on large scales becomes a serious
puzzle (Baumann 2011).

If we look in opposite directions on the sky and measure the CMB temperature, we find
it is the same to 1 part in ∼ 10−5 . This suggests that a thermalization process operated
before decoupling. However, in a decelerating radiation universe, thermalization could not
have taken place across the CMB sky. Precisely, the particle horizon at recombination is

Rrec '
1

Hrec
. (1.44)

This is the distance that light travels from the “beginning” of the Universe at t = 0 and
represents the limit of causal interaction at the time of last scattering, i.e. particles that are
separated by more than Rrec can never have been in causal communication. Points on the
last scattering surface at opposite ends of the sky are separated today by a distance equal
to the distance to the last scattering surface, Drec ∼ 1/H−1

0 , which is much greater than
the maximal causal separation, Rrec << Drec. And yet, the particles at these locations at
the time when the CMB distribution was frozen had never been in causal communication,
see Fig. 1.1. This is what we call the horizon problem.

The second mentioned problem is, instead, a fine-tuning problem related to the tem-
poral behaviour of the curvature parameter Ωk in the context of ΛCDM model. Indeed,
today |Ωk| . 10−2 (95% CL) (Planck Collaboration VI 2018), and since Ωk ∼ a−2 we had
immediately after the Big Bang a value of |Ωk| ∼ 10−60. Thus, to explain the low value
of Ωk today we have to fix the initial value with an inexplicable precision.

Before going further, we would like to stress that these are not real problems of the
standard cosmological model since, by imposing peculiar initial conditions, it is possible
to reproduce the current observations. However, it was this peculiarity that leads A. Guth
to formulate the theory of inflation (Guth 1987).

The founding idea beyond the theory of inflation is that the Universe, in its early stages,
undergo into an accelerated expansion. From Eq. (1.13), it is clear that this happens if
P < −ρ/3, implying the presence of a fluid with negative pressure different from Λ, that
starts to dominates in a more recent epoch. Thus we have to introduce a scalar field
(or more) that drive the expansion of the Universe. Note that here, since we are in the
primordial phase of the Universe, we are implicitly assuming Λ=0. The simplest models
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of inflation involve a single scalar field φ, the inflaton, minimally coupled with gravity.
That is, its dynamics is governed by the action

S =
∫
d4x
√
−g

[1
2R−

1
2gµν∂

µφ∂νφ− V (φ)
]
. (1.45)

The first term is the Einstein-Hilbert action. The second term describes a canonical scalar
field coupled to gravity through the metric gµν . From the variational principle we get the
Klein-Gordon (KG) equation

�φ = ∂V

∂φ
, (1.46)

where � is the D’Alambert covarinant operator

�φ = 1√
−g

∂ν
(√
−ggµν∂µφ

)
. (1.47)

In a flat FLRW Universe the KG equation becomes

φ̈+ 3Hφ̇− ∇
2φ

a2 + Vφ(φ) = 0 , (1.48)

where Vφ = ∂V/∂φ. The energy-momentum tensor is given by

Tµν = − 2√
−g

δSφ
δgµν

= ∂µφ∂νφ+ gµν

(
−1

2g
αβ∂αφ∂βφ− V (φ)

)
, (1.49)

from which, restricting to the case of a homogeneous field φ(t,x) ≡ φ(t), the scalar energy-
momentum tensor takes the form of a perfect fluid (1.8) with

ρφ = −T 0
0 = φ̇2

2 + V (φ) (1.50)

Pφ = 1
3T

i
i = φ̇2

2 − V (φ) . (1.51)

The equation of state

wφ = Pφ
ρφ

=
φ̇2

2 − V (φ)
φ̇2

2 + V (φ)
, (1.52)

shows that a scalar field can lead to negative pressure (wφ < 0) and accelerated expansion
(wφ < −1/3) if the potential energy V dominates over the kinetic energy φ̇2/2. Thus, if
V (φ) >> φ̇2/2, the inflaton φ “slowly” go through the minimum of the potential. This
phase is called Slow-Roll (SR), and take place when the inflaton is in a region in which
the potential is sufficiently flat (V (φ) ∼ const.), see Fig. 1.2. Under these conditions, for
the homogeneous background, the equations of motion became

H2 = 8πG
3

(
φ̇2

2 + V (φ)
)
, (1.53)

Ḣ = −4πGφ̇2 , (1.54)
φ̈+ 3Hφ̇+ Vφ(φ) = 0 . (1.55)

The first equation determines the Hubble parameter H, which is the expansion rate of the
universe. The second equation is the continuity condition. The third equation describes
the evolution of the inflaton. Only two of them, again, are independent.

From Eq. (1.53), if the condition of SR is respected, we have also H ∼const, thus the
comoving Hubble radius, rH ≡ RH

a(t) = 1
a(t)H , results a decreasing function during inflation.
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Figure 1.2: Example of an inflaton potential. Acceleration occurs when the potential energy of the field, V (φ),
dominates over its kinetic energy, 1

2 φ̇
2. Inflation ends at φend when the kinetic energy has grown to become

comparable to the potential energy, 1
2 φ̇

2 ' V . CMB fluctuations are created by quantum fluctuations δφ about
60 e-folds before the end of inflation. At reheating, the energy density of the inflaton is converted into radiation
(Baumann 2011).

That is, region causally connected after the Big-Bang can move away and become not-
causally connected. Furthermore, since the scale factor can be written as (in conformal
coordiantes)

a(η) ' − 1
Hη

, (1.56)

the Big-Bang singularity (a = 0) is pushed to the infinite past, see Fig. 1.3. Note that this
relation breaks down near the end of inflation. That is, η = 0 does not corresponds to the
Big-Bang but to the end of inflation.

Figure 1.3: Conformal diagram of inflationary cosmology. Here τ represent the conformal time. Inflation push the
Big-Bang at τ = −∞, and there is no singularity at τ = 0. The light cones intersect at an earlier time if inflation
lasts for at least 60 e-folds (Baumann 2011).

However, even if the horizon problem seems to be resolved, to take into account also
the flatness problem we have to impose some constraints on the duration of inflation. To
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do that it is useful to introduce the number of e-foldings

N =
∫ te

ti

dtH(t) = ln
(
a(te)
a(ti)

)
, (1.57)

where ti and te are the time in which the inflation begins (initial) and the time in which it
ends. It can be shown that both the discussed problems are resolved if N & 60− 70 (see,
e.g., Lyth and Liddle 2009) (the precise value depends on the details of reheating and the
post-inflationary thermal history of the universe).

It is customary to introduce, in the inflationary context, a parametrization of the SR
condition. First, to have this amount of inflation, N ∼ O(60), the Hubble function cannot
change much within a Hubble time H−1. This defines the condition

εSR ≡ −
Ḣ

H
<< O(1) . (1.58)

We also need that the parameter εSR does not change much within a Hubble time, that is

ηSR ≡
ε̇SR
HεSR

<< O(1) . (1.59)

In principle, ηSR can be close to O(1) but εSR kept small. In such a case, εSR grows
exponentially with e-folds and the inflation period tends to be shorter. More importantly,
such a case will not generate a scale-invariant spectrum, thus cannot be responsible for
the CMB.

1.3.1 Quantum fluctuation of the Inflaton

Until now, we have discussed the evolution of the homogeneous background φ(t). However,
to relate the inflation with the initial condition needed to produce the CMB anisotropy
pattern, we need to introduce perturbations to this background dynamics. This is possible
introducing quantum fluctuations

φ(t,x) = φ0(t) + δφ(t,x) , (1.60)

where φ0(t) is the homogeneous background part used so far. Here, initially, we are
going to ignore the perturbations in the gravity sector, only perturbing the inflaton as in
Eq. (1.60). Instead, terms suppressed by the slow-roll parameters will be always ignored,
e.g. the mass of the inflaton Vφφ ∼ O(ε)H2 (see, e.g. Lyth and Liddle 2009, for a complete
treatment). The Lagrangian for the perturbed inflaton is

L =
∫
d3x

[
a3

2
˙δφ2 − a

2∂iφ∂
iφ

]
. (1.61)

The resulting equation of motion, written in the coomoving momentum space

δφ(k, t) =
∫
d3xδφ(x, t)eik·x , (1.62)

is the following

δ̈φ(k, t) + 3H ˙δφ(k, t) + k2

a2 δφ(k, t) = 0 . (1.63)

Its solution can be written in terms of its mode function uk ≡ u(k, t)

δφ(x, t) =
∫

d3k
(2π)3

[
uk(t)ake

ik·x + u∗−k(t)a†−ke
−ik·x

]
. (1.64)
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It is not difficult to check that

a3uk(t)u̇k
∗(t)− c.c. = t-indipentent const. . (1.65)

According to the canonical commutation relations between δφ and its conjugate δπ ≡
∂L/∂ ˙δφ, we have

[δφ(x, t), δπ(y, t)] = iδ(x− y) (1.66)
[δφ(x, t), δφ(y, t)] = 0 = [δπ(x, t), δπ(y, t)] . (1.67)

If we use the decomposition

δφ = ukak + u∗−ka
†
−k (1.68)

δπ = a3u̇kak + a3 ˙u−k
∗a†−k , (1.69)

we can rewrite the commutation relation in the following form[
ak, a

†
p
]

= δ(3)(k− p) (1.70)[
a†k, a

†
p
]

= 0, (1.71)

The explicit solution of the mode function from Eq. (1.63) is

uk(η) = C+
H√
2k3

(1 + ikη) e−ikη + C−
H√
2k3

(1− ikη) eikη , (1.72)

where we use the conformal time η and the relation in Eq. (1.56). This mode function is
a superposition of two linearly independent solutions with the normalisation condition

|C+|2 − |C−|2 = 1 . (1.73)

Consider the limit in which the mode is well within the horizon, that is, its wavelength
a/k much shorter than the Hubble length 1/H, and consider a time period much shorter
than a Hubble time. In these limits only the first term in Eq. (1.72) survives. Furthermore,
the mode effectively feels the Minkowski spacetime. We choose this component as our
vacuum choice, and it is usually called the Bunch-Davies state (see, e.g. Lyth and Liddle
2009). The annihilation operator ap annihilates the corresponding Bunch-Davies vacuum,
ap |0〉 = 0.

The mode function
uk(η) = C+

H√
2k3

(1 + ikη) e−ikη , (1.74)

has the following important properties (Chen 2010):

– It is oscillatory within the horizon k|η| >> 1.

– As it gets stretched out of the horizon k|η| << 1, the amplitude becomes a constant
and frozen.

Physically the last item means that, if we look at different comoving patches of the universe
that have the superhorizon size, and ignore the shorter wavelength fluctuations, they all
evolve classically but with different δφ. This difference makes them arrive at φf , the
location of the end of inflation, at different times. This space-dependent time difference
δt ∼ δφ/φ̇0 leads to the space-dependent inflationary e-fold difference

ζ ∼ Hδt ∼ Hδφ

φ̇0
. (1.75)
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This e-fold difference is the conserved quantity after the mode exits the horizon, and re-
mains so until the mode reenters the horizon sometime after the Big Bang. It is the physical
quantity that we can measure, for example, by measuring the temperature anisotropy in
the CMB, ζ ∼ −5∆T/T (Lyth and Liddle 2009). The information about the primordial
inflation is then encoded in the statistical properties of this variable. So we would like to
calculate the correlation functions of this quantity.

It is important to mention that the presence of the inflaton field in the early Universe
is not only responsible for seeding the density fluctuation, but also for generating a back-
ground of weak gravitational waves. This is possible because quantum fluctuations around
the homogeneous solution for the inflaton field couple to metric fluctuations (gravitational
perturbations) via Einstein’s equations. Precisely, if we assume the Newtonian gauge and
we ignore possible vector perturbations of the metric, the perturbed line element can be
written as (see, e.g. Lyth and Liddle 2009):

ds2 = −(1 + 2Φ)dt2 + a2(t) [(1− 2Ψ)δij + hij ] dxidxj , (1.76)

where Φ and Ψ are known as Bardeen potentials and the term hij describes tensor fluc-
tuations, which can propagate as gravitational radiation. For scalar perturbation we can
define the gauge invariant quantity

ζ = −Ψ +H
δφ

φ̇0
, (1.77)

that is the gauge invariant extension of Eq. (1.75), known as curvature perturbation. Note
that this quantity relates the Bardeen potential, the dynamics, and the initial quantum
fluctuations δφ. Under the assumption of a homogeneous and isotropic Universe, we have
that the variance of ζ takes the form

〈ζkζp〉 = (2π)3δ(k + p) 1
2k3

(
H2

φ̇

)2 ∣∣∣∣∣
k=aH

≡ (2π)3δ(k + p)Pζ(k) , (1.78)

where the variance of each mode is defined at the horizon exit (i.e. k = aH). Here Pζ(k)
is the power spectra of the scalar perturbations.

Similar calculations can be carried out for tensor perturbations. The tensor hij can be
decomposed into two independent components h+ and h×, and isotropy ensures that the
amplitude of the tensor fluctuations is equally partitioned between these two components.
This leads to

〈h+,kh+,p〉+〈h×,kh×,p〉 = 〈hkhp〉 = (2π)3δ(k+p) 1
k3

(
4H2

M2
p

) ∣∣∣∣∣
k=aH

≡ (2π)3δ(k+p)Ph(k) ,

(1.79)
where, also this time, the variance of each mode is defined at the horizon exit (i.e. k = aH).
Here Ph(k) is the power spectra of the tensor perturbations.

It is customary to define the adimensionless power spectra

Ps(k) = k3

2π2Pζ(k) , (1.80)

Pt(k) = k3

2π2Ph(k) . (1.81)

A parametric description is often used for the scalar and tensor fluctuations power spectra

Ps(k) = As

(
k

k∗

)ns−1
, (1.82)

Pt(k) = At

(
k

k∗

)nt
= rAs

(
k

k∗

)nt
. (1.83)
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Here r, As , ns, and nt, evaluated at the pivot scale k∗ represent the inflationary parameter
used to constrain the physics of inflation. In particular, r is the tensor-to-scalar ratio
defined as

r ≡ At
As

. (1.84)

The ns and nt are the scalar and tensor spectral index, respectively,

ns − 1 = d lnPs(k)
d ln k , (1.85)

nt = d lnPt(k)
d ln k . (1.86)

The current CMB constraints are (Planck Collaboration VI 2018) ns = 0.9649±0.0042, and
ln
(
1010As

)
= 3.044 ± 0.014 at 68% CL. These results indicate that the primordial power

spectrum of the density perturbations is nearly scale-invariant, meaning that even on very
large scales (i.e. small k) points in the sky are expected to be somewhat correlated. From
the CMB B-mode polarization measurements by the BICEP2/Keck CMB polarization
experiment, the current constraint on the tensor-to-scalar ration results r < 0.07 at 95%
CL (Ade et al. 2018a).

1.4 Cosmological distances

Before ending this chapter we would like to explore one of the most difficult task in
cosmology: the measurement of distances in the Universe. It represents an issue to be
faced, since if we know the distance of a source, we can extract, in principle, information
about cosmological parameters. Indeed, distant objects can be observed through the light
they emit, which takes a finite time to travel to us. We have seen that the dynamical
evolution of the Universe changes under the effect of different matter and energy species
contributions. Thus, if the mathematical framework is correct, we expect an effect on the
propagation of light, induced by the expansion of the Universe. Therefore, once we know
the physical properties of the source, and we have a theoretical prediction about the change
of the geometry of the Universe, we can fit the data to extract the wanted information.
However, for the same reason, we cannot make measurements along a surface of constant
proper time, but only along with the set of light-paths traveling to us from the past. This
leads to define distances that are, at least in principle, directly measurable.

A possible definition of distance is the luminosity distance dL measured using the flux
emitted by a known source, e.g. type Ia supernovae. This is defined in such a way it
preserves the Euclidean inverse-square law for the diminution of light with distance from
a point source. If L denote the power emitted by a source at a given point at time t (i.e.
the luminosity), and l be the power received per unit area at time t0 (i.e. the flux) by an
observer, we then define

dL =

√
L

4πl . (1.87)

The observed flux from a source is by definition

l = Nhνo
A∆to

, (1.88)

where N is the number of photons, h is the Planck constant, and νo is the observed
frequency of the emitted photons in the time interval ∆to. Here A = 4πd2

p is the area of a
spherical surface centred on the emission point and passing through the observer at time
to. The parameter at denominator, dp, is the proper distance. It is defined as the distance
measured by a chain of rulers held by observers which connect two points at fixed time t.
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In particular, in a FLRW metric, if we take the origin of a set of polar coordinates r, θ
and φ on one of the two point, since the time is fixed (i.e. dt = 0),

dp = a(t)
∫ r

0

dr′√
1−Kr′2

. (1.89)

Since the luminosity of the source emitted with frequency νe at time ∆te is given by

L = Nhνe
∆te

, (1.90)

it follows that, since frequency and time intervals are redshifted, (i.e. νo = νe(1 + z) and
∆to = ∆te(1 + z)−1), the luminosity distance is

dL = dp(1 + z) . (1.91)

Another useful distance is the angular diameter distance DA of an object of known
size (standard ruler). It represents the variation of the angular size of an object with its
distance from an observer. To derive its expression we use the coordinates introduced in
Eq. (1.6) setting, without loss of generality, r = 0 at the observer position. Let Dp(η) be
the (proper) diameter of a source placed at coordinate r at time η. It follows that, for a
small source, Dp = DAθ, where DA is the angular diameter distance. Suppose now that a
flash is simultaneously emitting from the source at both of its ends. Since the light moves
along null geodesics, the proper diameter of the source (the arc) seen by the observer is

ds2 = a2(η)χ2(r)dθ2 ⇒ Dp = a(η)χ(r)θ , (1.92)

since the distance of the source is fixed respect to the observer (η is fixed) . Now, observing
that at the flashes we have r = η0 − η, and thus χ(r) = χ(η0 − η), we can rewrite DA as

DA(z) = a(η)χ(η0 − η) . (1.93)

To go further, we can observe that from 1 + z = 1/a we have

dz

dt
= − ȧ

a2 = −H(z)
a(t) ⇒

∫
dη = −

∫
dz

H(z) , (1.94)

and then
η0 − η =

∫ z

0

dz′

H(z) . (1.95)

Finally, from (1.26) follows that

η0 − η = 1
H0

∫ z

0

dz′

[Ωr(z + 1)4 + Ωm(1 + z)3 + Ωk(z + 1)2 + ΩΛ]1/2
, (1.96)

from which

DA(z) =


1

1+zχ

(
1
H0

∫ z
0

dz′

[Ωr(z+1)4+Ωm(1+z)3+Ωk(z+1)2+ΩΛ]1/2

)
if K , 0

1
(1+z)H0

∫ z
0

dz′

[Ωr(z+1)4+Ωm(1+z)3+ΩΛ]1/2
if K = 0

. (1.97)

This result shows that, if we know how to measure the angular diameter distance, we are
in principle able to extract from Eq. (1.97) the values of the five parameters, namely the
density parameters Ωr, Ωm, ΩΛ and Ωk with the Hubble constant H0 (or equivalently the
Hubble parameter h). This statement is true also for the other distances. The current
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CMB plus lensing3 constraints at 68% CL on these cosmological parameters are (Planck
Collaboration VI 2018) ΩΛ = 0.6847 ± 0.0073, Ωm = 0.3153 ± 0.0073, H0 = 67.36 ± 0.54
and Ωr ∼ 10−5. Note that, the radiation component is usually neglected, but it can be
estimated from the black-body temperature of the CMB spectrum, Ωr = ΩCMB. These
values are obtained with the constraint of a flat universe (i.e. Ωm + ΩΛ = 1). However, a
1-parameter extension to the ΛCDM model can be used to constrain Ωk = 1− Ωm − ΩΛ,
resulting in Ωk = 0.0007 ± 0.0019. It is important to observe that this constraint is
obtained by combining the Planck data with Baryonic Acoustic Oscillation (BAO) data,
step necessary to breaks the internal geometric degeneracy. This joint result suggests our
Universe looks remarkably flat.

3See Sec. 2.2.1.



Chapter 2

Cosmic Microwave Background Radiation

The Cosmic Microwave Background was accidentally discovered in 1965 by Arno Penzias
and Robert Woodrow Wilson. They measured an excess in temperature of few K that
was, within the limits of their observations, isotropic, unpolarised, and free from seasonal
variations (Penzias and Wilson 1965). Later, this radiation was interpreted by R. Dicke, P.
Peebles, P. Roll, and D. Wilkinson as a signal of a “hot” primordial phase of our Universe
(Dicke et al. 1965). The spectral energy distribution associated with this thermal emission
follows the Planck law

Bν(T ) = 2ν3
(
ehν/T − 1

)−1
, (2.1)

This discovery pushed cosmologist into space, leading to the first space mission devoted
to the measurement of the CMB spectrum. The spacecraft COBE (COsmic Background
Explorer), in 1989 (Fixsen et al. 1994, 1996), measured the associated black-body tem-
perature to be T = 2.72548± 0.00057 K, finding the presence of small fluctuations of the
order of

∆T
T
∼ 10−5 . (2.2)

The COBE collaboration constrained possible departures from the blackbody spectrum to
be less than 1% (Fixsen 2009). After COBE, the CMB anisotropies have been observed
by many ground-based and balloon-borne experiments, as well as by two other satellites,
WMAP (Hinshaw et al. 2013) and Planck (Planck Collaboration VI 2018), launched in
2001 and 2009 respectively.

2.1 CMB temperature anisotropies

As we have mentioned in Sec. 1.3, the inflationary scenario allows us to relate the quantum
fluctuation of the inflaton to the small fluctuation of the temperature field, known as
anisotropies of the CMB temperature. In the standard scenario, the inflation ends when
the inflaton starts to oscillate around the minimum of its potential. These oscillations
comes after a phase in which the SR parameters became of the order of unity, allowing
the inflaton to acquire mass (we have discarded this term, since during inflation Mφ ∼
O(ε) << 1). The massive inflaton decays into radiation and relativistic particles, starting
the reheating phase, that marks the transition from an inflationary to a FLRW Universe.

To properly describe the formation and the evolution of CMB radiation it is necessary
to make use of Boltzmann equation. It represents the mathematical framework which
relates the evolution of the distribution function of a species and their interaction (grav-
itational and not) within the expanding Universe. Starting from the assumption that
the distribution function of radiation f(x,p, t) on large scale is a Planckian, with small

22
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temperature perturbation ∆T/T , it is possible to rewrite f(x,p, t) as (Dodelson 2003)

f(x, p, p̂, t) '

exp

 p

T (t)
[
1 + ∆T

T (x, p̂)
]
− 1


−1

. (2.3)

Since the fluctuations are supposed to be small, we can separate the unperturbed evolution
of f(x, p, p̂, t) from the perturbed one. In particular, focussing the attention only on the
inhomogeneous component, in Fourier space, we can rewrite the `-th order term as

Θ` (k, η0) ' [Θ0 + Φ] (k, η∗) j` [k (η0 − η∗)]

+ 3Θ1 (k, η∗)
(
j`−1 [k (η0 − η∗)]−

`+ 1
k (η0 − η∗)

j` [k (η0 − η∗)]
)

+
∫ η0

0
dηe−τ

[
Φ̇− Ψ̇

]
j` [k (η0 − η)] .

(2.4)

Here we have used the conformal time η, and defined the multipole expansion

Θ`(k, η) ≡ 1
(−1)`

∫ 1

−1

dµ

2 P`(µ)∆T
T

(k, k̂, η) , (2.5)

where µ = k̂ · p̂ and P` is the `-th Legendre polynomial. Furthermore, η∗ is the conformal
time at the epoch of recombination, j` is the `-th spherical Bessel function, τ is the optical
depth

τ(η) ≡
∫ η0

η
dη′neσTa(η) , (2.6)

The equation is written in the conformal Newtonian gauge (cfr. Eq. (1.76)), where the
scalar perturbations are characterized by two scalar potentials, Φ and Ψ:

ds2 = a(η)2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdxidxj

]
. (2.7)

The three terms in Eq. (2.4) are the Sachs-Wolfe, Doppler, and the integrated Sachs-
Wolfe (ISW) term. The first represent an effective temperature given by the monopole Θ0
and the gravitational contribution due to the overdensities on the last scattering surface.
The dipole term is generally subdominant and produce Doppler anisotropies, and is due
to peculiar velocities of the photo-baryonic fluid. The last term basically encodes the
information about the gravitational potential that lays between us and the last scattering
surface. In other words, it takes into account the whole story of CMB, since it is an
integral from η = 0 to η = η0.

2.2 Temperature power spectrum

The Eq. (2.4) represents the mathematical foundation of the phenomenological parametriza-
tion of the CMB temperature field

Tobs(n̂) = T0

(
1 + (β · n̂) + ∆T

T0
(n̂)
)

+O(β2) , (2.8)

where T0 is the blackbody temperature of the smooth component, β = v/c is our proper
velocity vector with respect to the CMB rest frame, and ∆T (n̂)/T0 is the CMB tempera-
ture anisotropy field. However, even if this equation represents a complete picture of the
CMB temperature sky, the stochastic nature of the quantum fluctuations during inflation
does not allow us to develop a theory to exactly predict ∆T (n̂)/T0. Nevertheless, this
problem can be suitably approached from a statistical point of view. A CMB anisotropy
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temperature map, ∆T (n̂)/T0, can be uniquely decomposed in spherical harmonics Y`m(n̂),
which define an orthonormal basis on a complete sphere, such that

∆T
T0

(n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂) , (2.9)

where
a`m =

∫
dΩn̂Y

∗
`m(n̂)∆T

T0
(n̂) . (2.10)

Note that, the reality condition ∆T (n̂)/T0 ∈ R imply that

a`−m = (−1)ma∗`m . (2.11)

We have seen that these anisotropies have an inflationary origin. Precisely, they are
due to the quantum fluctuations of the fields that drive inflation (in the simplest model
the inflaton). These quantum fluctuations are (near) Gaussian distributed around the
vacuum state, and then we expect that also the a`m are Gaussian distributed with null
average, i.e.

〈a`m〉 = 0 . (2.12)

Note that, the vacuum expectation value can generally be different from zero. However,
any constant value can be reabsorbed through a redefinition of the field in interest (a
translation), identifying 〈δφ〉 = 0. Thus, the first non-vanishing contribution is the vari-
ance

〈a`ma∗`′m′〉 = δ`
′
` δ

m′
m C` , (2.13)

where C` represents the angular power spectrum (APS). Here the constraints imposed by
the two Dirac delta functions follow from the a`m being independent random variables
(diagonal covariance). Moreover, statistical isotropy ensures that the variance does not
depend on m (rotational invariance of C`). The power spectrum is related to the two-point
correlation function of the field C(θ) = 〈T (n̂1)T (n̂2)〉 observed at two directions n̂1 and
n̂2 in the sky such that n̂1 · n̂2 = cos θ:

C(θ) =
∑
`

(2`+ 1)
4π C`P`(n̂1 · n̂2) , (2.14)

where P` is the Legendre polynomial of order `. The importance of the variance C`, or
equivalently the two-point correlation function C(θ), emerges from the Wick’s theorem. It
ensures that, for a Gaussian distribution, odd momenta vanish and even momenta beyond
the second can be recast as a function of the variance. That is, if a random variable is
Gaussian distributed, all the statistical properties are encoded in its mean and variance,
which are the only momenta of the distribution we need to know.

It is important to note that, since the a`m’s follow a Gaussian distribution with zero
mean and variance C`, the probability density function1 p(a`m|C`) of the a`m’s conditioned
by the C`’s is

p(a`m|C`) = 1√
2πC`

exp
{
−|a`m|

2

2C`

}
. (2.15)

Statistical isotropy of the C`’s allows us to rewrite Eq. (2.13) as:

C` = 1
2`+ 1

m=`∑
m=−`

〈|a`m|2〉 , (2.16)

1See Chapter 3 for a detailed definition of probability.
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where the symbol 〈. . .〉 represents an ensemble average. This follows from the random
nature of the CMB field, which implies that the statistical information about the outcome
of such a process should be obtained by averaging over all possible realisations. In practice,
however, we can only observe a single realisation of the CMB field. A way out is provided
by the statistical homogeneity and isotropy of the CMB fluctuations, that in principle
allows to substitute the ensemble average in Eq. (2.13) with an average over different
positions and directions. According to this ergodic hypothesis, different regions that are
widely separated in the sky are statistically independent from each other and can be
considered as different statistical realisations of the same stochastic process. Since we
only have access to the CMB field observed at x0 and η0, i.e., the CMB field here and
now, what we are really left is the average over different directions, or equivalently over
different values of m. In other words, for a given `, all the a`m are drawn from the same
distribution, which can be therefore sampled by measuring all the 2`+1 coefficients. These
observations lead us to define an unbiased estimator2 of the observed power spectrum

Ĉ` = 1
2`+ 1

m=`∑
m=−`

|a`m|2 . (2.17)

This replacement induces an intrinsic source of inaccuracy known as cosmic variance〈
∆C2

`

C2
`

〉
= 〈C

2
` 〉 − 〈C`〉2

C2
`

= 1
(2`+ 1)2 (2`+ 1) (3 + 2`)− 1

= 2
2`+ 1 .

(2.18)

Cosmic variance is an irreducible source of uncertainty in cosmological measurements of
the CMB power spectrum, and one of the major sources of uncertainties especially at the
largest scales (low-`), where we have only a limited number of coefficients a`m to average
over with respect to the small-scale (high-`) regime.

The APS represents the meeting point between theory and experiments. In particu-
lar, ΛCDM model gives accurate prediction about the shape of the power spectrum, see
Fig. 2.1. In the large-scale regime, ` < 30, we find the Sachs-Wolfe plateau, since the
large-scale anisotropies do not evolve significantly, according to the near-scale invariance
imposed by inflation. At the intermediate scale, 30 . ` . 1500, we have the acoustic peaks
due to the photo-baryonic interactions, that in this regime are relevant. Precisely, before
recombination, the perturbations in gravitational potential (dominated by dark matter)
compress the photo-baryonic fluid, which resists to these compressions due to the inter-
nal pressure (produced by the presence of radiation). These compression-decompression
phases of the fluid give rise to the acoustic oscillations. After recombination, photons can
freely travel to us, and the phase of the oscillations is frozen and it is projected on the sky
as an harmonic series of peaks (the acoustic peaks). In the small-scale regime, ` & 1500,
we can see the damping tail. Here the scales involved in the process are comparable with
the mean distance of the photons during recombination. Thus, due to the duration of re-
combination, the last scattering surface acquires depths, and then, if the distance between
a Thomson scattering and another is greater than this depth, there is a damping of the
acoustic oscillations due to absorption processes.

2See Sec. 3.2 for the definition of estimator.
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Figure 2.1: The base-ΛCDM theoretical spectrum best fit to the Planck TT,TE,EE+lowE+lensing likelihoods is
plotted in light blue in the upper panel. Residuals with respect to this model are shown in the lower panel. The
error bars show ±1σ diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not including
uncertainties in the foreground model at ` ≥ 30 (Planck Collaboration VI 2018).

2.2.1 Secondary anisotropies

Several processes in the foreground of recombination could alter the anisotropy spectrum.
Their existence is due to effects that happens well after the last scattering, and that
generate what we generally call as secondary anisotropies. We can summarize the most
important:

– Gravitational effects: Secondary anisotropies can be generated by gravitational
redshift effects between recombination and today. As pointed out in Eq. (2.4), the
scalar potentials difference Φ̇ − Ψ̇ has to be integrated along the trajectory of the
photons. This represents an important effect due to the time-varying potential over
cosmological time-scale, caused by the expansion of the Universe that impacts on its
density composition.

– Gravitational lensing: The ISW effect is caused by the gravitational push given
to the photons in a direction parallel to their motion. This changes the energy but
not the direction. If the stress is in direction perpendicular to the motion, there is a
change of direction, while the first order of the photon energy remains unchanged. If
a pair of photons, moving towards the observer, are initially separated by an angle
θ, due to this effect, they arrive to the observer with an angle θ + δθ. This is an
effect of weak gravitational lensing. The effect on the spectrum of the anisotropies
of the CMB is to smooth both peaks and valleys.

– Reionization: After recombination the universe is essentially neutral. However,
measurements made on the absorption spectra of high-redshift quasars show no
evidence of a uniform background of neutral hydrogen until we go back as least
as far as z ∼ 6. This shows that during a period with z > 6 the Universe had a
new global reionization, which brings the CMB back in contact with electrons. If
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these photons hit a region with optical depth τ , only a fraction e−τ will escape and
continue on their way to us. In addition to these, we will also get a fraction 1− e−τ
from the ionized region. All of these have the equilibrated temperature, T . So the
temperature we see today is

T

[
1 + ∆T

T

]
e−τ + T (1 + e−τ ) = T

[
1 + ∆T

T
e−τ

]
, (2.19)

that is, inside the standard cosmological model, this effect is parametrised as a
reionization layer that reduces the fluctuation amplitude on all scales by a factor
e−τ .

– Sunyaev-Zeldovich (SZ) effect: The phenomenon of reionization can also hap-
pen on a local scale, involving limited regions of the universe (for example a cluster
of galaxies). The CMB photons are scattered by high energy photons in intracluster
gas. Electrons transfer energy to CMB photons through inverse Compoton processes
and simultaneously change their direction of propagation. However, on average, the
statistical information remains unchanged. This effect impacts on the blackbody
distribution, which results distorted in the high frequency part. Basically it move
photons from the Rayleigh-Jeans part of the CMB spectrum in the Wien region.
It is possible to calculate the change of intensity, which, of course, depends on the
physical properties of the cluster,

∆IRJ
ν

IRJ
ν

= −2
∫
dlσTne

kT

me
, (2.20)

where the integral is performed along the length of the cluster. This equation shows
that the change in intensity is independent on the redshift of the observed cluster,
thus the SZ effect assumes great importance also for the identification of high redshift
clusters.

2.3 Polarization power spectrum

Till now we have described only the temperature fluctuation of the CMB, moreover Thom-
son scattering provides also a mild (∼5%) polarization of the radiation. Its cosmological
information content, which is complementary to the one extracted from CMB tempera-
ture statistics, can be obtained from the angular distribution of the linear polarization
of the CMB photons (see, e.g., Kamionkowski et al. 1997; Seljak and Zaldarriaga 1996).
The polarization of light is commonly described by Stokes parameters I, Q, U , and V . If
we consider a monochromatic wave that propagates in the direction ẑ with pulse ω0, the
corresponding electric field can be written as

Ex(t) = ax(t) cos(ω0t+ φx(t)) , (2.21)
Ey(t) = ay(t) cos(ω0t+ φy(t)) , (2.22)

where ax,y are the electric field amplitudes in the x̂ and ŷ directions, with φx,y(t) phases.
The four Stokes parameters are functions of the electric field amplitudes, such that:

I = 〈a2
x〉+ 〈a2

y〉 , (2.23)
Q = 〈a2

x〉 − 〈a2
y〉 , (2.24)

U = 〈2axay cos(φx − φy)〉 , (2.25)
V = 〈2axay sin(φx − φy)〉 , (2.26)

(2.27)
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where 〈. . .〉 indicates the time average. The parameter I represents the intensity of the
wave, whereas the polarization is described by a non-zero value of the remaining 3 param-
eters. In particular, Q and U describe the linear polarization, while V is a measure of the
circular one that is not expected for the case of the CMB. Thomson scattering does not
produce circular polarization, while the Q component correspond to the polarization in
the x̂− ŷ direction and U rotated of 45 degrees.

The usually approach followed in CMB analysis is to consider two combinations for
the polarization components Q± iU

(Q+ iU) (n̂) =
∞∑
`=0

∑̀
m=−`

a2,`m2Y`m(n̂) , (2.28)

(Q− iU) (n̂) =
∞∑
`=0

∑̀
m=−`

a−2,`m−2Y`m(n̂) , (2.29)

(2.30)

where the a±2,`m, are the expansion coefficients of the spin-2 spherical harmonics ±2Y`m.
At this point it is useful to introduce two scalar quantities that describe the polarization

E(n̂) =
∑
`m

aE`mY`m(n̂) , (2.31)

B(n̂) =
∑
`m

aB`mY`m(n̂) , (2.32)

(2.33)

where

aE`m = −a2,`m + a−2,`m
2 , (2.34)

aB`m = −ia2,`m − a−2,`m
2 . (2.35)

(2.36)

The corresponding power spectra are defined as

〈aE`maE ∗`′m′〉 = δ``′δmm′C
EE
` , (2.37)

〈aB`maB ∗`′m′〉 = δ``′δmm′C
BB
` , (2.38)

〈aT`maE ∗`′m′〉 = δ``′δmm′C
TE
` , (2.39)

and their theoretical best-fit to the current available data is plotted in Fig. 2.2. The TB
and EB cross-correlation are expected to be null.

We now need to connect the measurable Stokes parameters to the physical mechanism
that generates linear polarization of the CMB. Photons and electrons interact in the photo-
baryonic plasma via Compton scattering, which does not induce polarization unless the
intensity of the light scattering off of the electron is anisotropically distributed. The
cross-section of the process can be written as

dσ

dΩ = 3σT
8π |ε̂ · ε̂

′|2 , (2.40)

where ε̂′ = (ε̂′x, ε̂′y) and ε̂ = (ε̂x, ε̂y) are the polarization vectors of the incident wave
and the scattered one, respectively, defined in the plane perpendicular to the direction of
propagation of the wave, ẑ. The ẑ-direction changes after the scattering by an angle θ
defined in the plane that contains the propagation directions of the incoming and scattered
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Figure 2.2: Recent measurements of the CMB temperature anisotropy and polarization (Choi et al. 2020). The two
models, the thin nearly overlapping grey lines, are from Planck (dashed line) and from ACT plus WMAP (A20,
solid line). The primordial BB signal with r = 0.1 is also shown with the dot-dashed line. For Planck here it is
shown the 2018 results (Planck Collaboration VI 2018). For SPT it is shows Henning et al. (2018b) for 150 GHz TT
` < 2000, TE and EE, and Sayre et al. (2020) for BB. For ` > 2000 it is shown the SPT spectrum from George et al.
(2015) which has been corrected for point source emission. It is visually indistinguishable from the more precise but
uncorrected spectrum in Reichardt et al. (2020). For Polarbear/Simons Array it is shown EE from Adachi et al.
(2020) and BB from pipeline Ade et al. (2017). For BICEP2/Keck it is used Ade et al. (2018b). All error bars are
one sigma and points with no lower bound in TT and EE have been dropped at high `. For ACT they also show
preliminary EE results that were not used in the analysis.

waves. In this geometrical configuration, let us consider an initially unpolarised incident
light, and let I ′ and I be the intensity of the incident and scattered light, respectively. For
the scattered the intensity along the x̂ and ŷ directions can be written as Ix = (I +Q)/2
and Iy = (I −Q)/2, leading to:

Ix = 3σT
16π

[
I ′x(ε̂′x · ε̂x)2 + I ′y(ε̂′y · ε̂x)2

]
= 3σT

16π I
′ , (2.41)

Iy = 3σT
16π

[
I ′x(ε̂′y · ε̂x)2 + I ′y(ε̂′y · ε̂y)2

]
= 3σT

16π I
′ cos2 θ , (2.42)

which can be inverted to obtain the I and Q Stokes parameters of the scattered wave

I = Ix + Iy = 3σT
16π I

′(1 + cos2 θ) , (2.43)

Q = Ix − Iy = 3σT
16π I

′ sin2 θ . (2.44)

The U parameter can be calculated by rotating the reference frame by 45◦, therefore
substituting U with Q (that is Q′ = U and U ′ = −Q). The final expression for the three
Stokes parameters of interest can be obtained by integrating over all possible incoming
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directions, thus obtaining

I = 3σT
16π

∫
dΩI ′(θ, φ)(1 + cos2 θ) , (2.45)

Q = 3σT
16π

∫
dΩI ′(θ, φ) sin2 θ cos(2φ) , (2.46)

U = 3σT
16π

∫
dΩI ′(θ, φ) sin2 θ sin(2φ) , (2.47)

where the dependence on φ in the integral for Q and U derives by the necessity to
have a common frame for the various directions of incidence, than the initially chosen,
convenient for calculations. Finally expanding I ′(n̂) in spherical harmonics, I ′(n̂) =∑
`m a`mY`m(n̂),is obtained:

I = 3σT
16π

[8
3
√
πa00 + 4

3

√
π

5 a20

]
, (2.48)

Q− iU = 3σT
4π

√
2π
15 a22 . (2.49)

These expressions show that the production of linear polarization is determined by the
presence of a quadrupole term in the distribution of the intensity of the radiation around
the electron. Note that, in a more rigorous treatment we have to consider the Compton
cross section and the evolution of the Boltzmann equation. Even in this case, the result
shows that the polarization part is homogeneous except for the source term given by the
quadrupole radiation (see, e.g. Dodelson 2003). For the V -mode polarization, instead, we
obtain an equation that is homogeneous and completely decoupled from other parameters,
and, it has therefore no source term. Thus, if we initially have V = 0, we obtain a solution
where V will not be produced. Note, however, that there are processes, other than the
Thomson scattering, capable of producing circular polarization.

2.3.1 The reionization fingerprint
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Figure 2.3: Shape of the normalized EE power spectrum, DEE` = `(`+1)
2π CEE` , for three different values of the

reionization optical depth, τ , in a flat ΛCDM model.

The physics behind the polarization production ensures that no polarization can be
generated after decoupling if there is no new phase of ionisation. Precisely, before recombi-
nation, we have seen that photon and baryon form a tightly coupled system, in which the
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damping scale is a few Mpc. This produces, in the electron rest frame, a nearly isotropic
photon distribution function. As photons and electrons decouple, the mean-free path of
the photons starts to grow and the temperature quadrupole moment is produced by free
streaming. On the other hand, electrons are in different regions with slightly different
velocities. Photons scattering off these electrons will have an intensity that, for a fixed
wavelength, depends on the direction. For wavelengths longer than the width of the last
scattering surface ∆ηd the polarization perturbation can be shown to be (Zaldarriaga and
Harari 1995)

ΘP = 0.51(1− µ2)eikµ(ηd−η0)k∆ηdΘT
1 (ηd) , (2.50)

where ΘT
1 is the temperature dipole term, µ = k̂ · n̂ with n̂ equal to the direction of

photon propagation, and ηd is the conformal time of decoupling. Thus, since for the
standard adiabatic initial conditions ΘT

1 and the baryon velocity vanish (in the tight
coupling regime ΘT

1 ∝ vb) as kη → 0, in absence of a reionization phase (τ = 0) we have
a dramatic fall of polarization for large angular scales, see Fig. 2.3. For smaller angular
scales, ` ≥ 100, the same acoustic oscillations that generate the Doppler peaks in the
temperature anisotropy cause the peaks in the polarization spectrum. The polarization
peaks are located at different ` values with respect to temperature peaks because they
occur for different wave vectors. Finally, also the polarization power spectra is damped
due to the finite width of the last scattering surface.

However, on large angular scales, there is the presence of a peak in the polarization
power spectrum that is not taken into account from the previous explanation. This is
explained by the presence of an epoch reionization3. In this scenario, the visibility function,
g(η) = τ̇ e−τ , i.e. the probability that a photon reaching the observer last scattered between
η and η+dη, has two peaks: one at recombination and the other due to reionization. This
allows us to separate the formal line of sight solution for the polarization perturbation

ΘP = −1
2

∫ η0

0
dηeikµ(η−η0)g(η) [1− P2(µ)] Π , (2.51)

where Π = ΘT
2 + ΘP

2 + ΘP
0 , in two pieces:

ΘP = −1
2 [1− P2(µ)]

{∫ ηr

0
dηeikµ(η−η0)g(η)Π +

∫ ηd

ηr
dηeikµ(η−η0)g(η)Π

}
, (2.52)

where ηr is the conformal time of the start of reionization. The first integral just represents
the polarization generated at recombination, and it is equal to e−τrΘP

NR, with ΘP
NR equal

to the polarization that would be measured if there was no reionization. This contribu-
tion is damped because only a fraction e−τr of the photons that arrive to the observer
came directly from recombination without scattering again after reionization. The second
integral is the new contribution coming from reionization. Since the temperature has a
quadrupole term coming from the free streaming of the monopole at recombination, while
the polarization terms do not grow after decoupling, as a first approximation we have
Π = ΘT

2 . In particular, the quadrupole at ηr arising from the free streaming of monopole
at recombination is (Zaldarriaga 1997)

ΘT
2 (ηr) = (ΘT

0 + Φ)(ηd)j2 [k(ηr − ηd)] , (2.53)

where j2 is the ` = 2 spherical Bessel function. The first peak corresponds approximately
at the first peak of the Bessel function, and its position is given by ` ∼ 2√zr, where zr is
the redshift at which reionization starts. Note that, only the first peaks appear because
the reionization scattering surface is very wide and thus the integrand in Eq. (2.52) for
smaller wavelengths oscillates during its width and cancels out after integration. This

3See Sec. 1.2 and Sec. 2.2.1.



CHAPTER 2. COSMIC MICROWAVE BACKGROUND RADIATION 32

cancellation makes the new polarization small and thus hidden under the polarization
generated at recombination, see Fig. 2.3.

Polarization provide the best probe for the characterisation of reionization in the con-
text of CMB measurement. In particular, for the large angular scales, the EE power
spectrum scales as CEE` ∝ τ2, against the linear dependency of the TT and TE spectra
(i.e. CTT` , CTE` ∝ τ).

2.4 Choice of cosmological parameters

Until now4, we have outlined five parameters determining the background homogeneous
spacetime (matter density Ωm, radiation density Ωr, vacuum energy density ΩΛ, curva-
ture density Ωk, and Hubble parameter h), four parameters determining the spectrum of
primordial perturbations (scalar and tensor amplitudes As and At and power-law indices
ns and nt), and a single parameter τ describing the total optical depth since reioniza-
tion. However, the current data analyses done to constraint the cosmological model are
driven by CMB anisotropy experiments, and in particular they rely on the analyses of
CMB power spectra. There is one near-exact degeneracy (the geometric degeneracy) and
several approximate degeneracies in the parameters describing the CMB power spectrum.
These degeneracies increase the time needed to find the parameter values that fit the model
on data. Indeed, a poor choice of parameter imply to spend time exploring degeneracy
directions. This statement will be clear once the Markov Chain Monte Carlo techniques
have introduced, see Sec. 3.3.3. The effects of these degeneracies are reduced by finding
a combination of cosmological parameters that have essentially orthogonal effects on the
angular power spectrum. As pointed out in Kosowsky et al. (2002), within the context of
fitting a flat (Ωk = 0) ΛCDM model to a CMB power spectrum, six key parameters are
primarily chosen to avoid degeneracies and thus speed convergence of the model fit to the
data. There are two parameters for the physical energy density today of baryons, Ωbh

2,
and cold dark matter, Ωch

2. There is a parameter for the characteristic angular scale of
the acoustic peaks,

θ∗ = r∗s/D
∗
A , (2.54)

where the ∗ indicate that the involved quantities are evaluated at the decoupling, r∗s is he
sound horizon at decoupling

r∗s = c

H0
√

3

∫ a∗

0

{(
1 + 3Ωb

4Ωγ

)[
(1− Ωm − ΩΛ)z2 + ΩΛz

1−3w + Ωmz + Ωr

]}−1/2

dz ,

(2.55)
and D∗A is the angular diameter distance at decoupling (see Eq. (1.97)). The reionization
is parametrised through the Thomson scattering optical depth due to reionization, τ . The
remaining two core parameters are the scalar spectrum power-law index, ns, and the log
power of the primordial curvature perturbations, ln(1010As). Both are normalised at the
pivot scale k0 = 0.05 Mpc−1.

For more complex models we usually add other parameters. For example, we include
the tensor-to-scalar ratio, r, to constraint the tensor perturbation. Any new physics that
affects the damping tail of the CMB spectrum, such as additional relativistic particles,
can alter the constraints on the scale-invariance of the spectrum. To study the scale
dependence of primordial fluctuations we can include the running of the scalar spectral
index, dns/d ln k. The geometry of the Universe is parametrized adding as extra parameter
the curvature density, Ωk. We can also study the neutrino physics allowing the variation
of its mass (the sum of neutrino masses) mν , or the effective number of neutrino species

4See Chapter 1.
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Neff . Another useful extension is the ∆-parametrisation of the lack-of-power anomaly,
see Chapter 5.

2.5 Foregrounds

There are other astrophysical sources that are between the last-scattering surface and
us. These are called foreground, and their presence, despite the great interest in other
branches of physics, represents an obstacle for a CMB study. However, they have a different
frequency behaviour with respect the CMB anisotropies, allowing us to distinguish them.
To remove these emissions and clean the measured data maps, it is necessary to know
what type of processes we are dealing with and how to parametrise them.

– Synchrotron: It is a diffuse emission due to spiraling electrons in the galactic
magnetic fields. This radiation may be highly polarised, up to a 75%. The spectrum
of synchrotron emission is basically flat at frequencies ν ≤ 20 GHz and then, for
higher frequencies, follows an exponential law with a negative index βs ∼ −3.

– Free-free: It is bremsstrahlung emission coming from electron-ion collision. Its
spectrum is close to a power law for frequencies greater than 1 GHz and presents
a visible break at lower frequencies. This happens because the medium becomes
optically thick, in addition the brightness temperature becomes equal to the electron
temperature. Free-free spectrum is similar to the synchrotron one at low frequencies,
but can be distinguished because its power-law index is flatter than the synchrotron
one.

– Spinning dust: It is dust grain having non-zero dipole moment that rotates and
emits in the microwave region of the electromagnetic spectrum. The frequency spec-
trum shows a peak between 25 and 30 GHz and then it follows a power law in analogy
with the synchrotron and free-free case.

– CO lines: They are emission lines of carbon monoxide (CO). It is possible to
separate these lines from the other diffuse components and to describe parametrically
in terms of an amplitude a(p) inside the corresponding detector map.

– Thermal dust: It is the dominant component at frequencies ν > 100 GHz. Its
characteristic spectrum is a modified black body with a free emissivity index βd and
a characteristic temperature Td. Thermal dust gives its contribution also in polar-
ization, because aspherical dust grains tend to distributes along the local magnetic
field lines. This behaviour translates into a polarised emission in the microwave band
with the same thermal-dust spectrum.

– Thermal SZ: The deviation from the black body spectrum of photons which un-
dergo inverse compton scattering leaves an imprint increasing the brightness on high
frequencies.



Chapter 3

Overview on data analysis techniques

The comparison between theories and observations is an essential part of physics. Ex-
tract information about physical quantities from data, often subject to various sources
of uncertainty, is the crucial step needed to confirm or exclude a theory. The amount of
data that needs to be analysed to achieve this goal is considerably high. Moreover, the
complexity of our theories and experiments designed to test them increases with time.
Nevertheless, limited resources require an excellent ability to make forecasts to obtain the
highest scientific return.

The discipline that provides the tools to reach this purpose is Statistics. Its mathe-
matical foundations were laid in the 17th century with the development of the probability
theory, even if the first use of some basic concepts can be date back to the 8th century.
There are many distinct interpretations of the word probability, but for the sake of brevity,
we group them in two extreme interpretations: frequentist (or objective) and Bayesian (or
subjective). Needless to say, both of them give the framework in which we can use the
data to perform statistical inference about the underlying physical model.

Cosmologists often face difficult and computationally intensive inference problems (see,
e.g., Trotta 2008). This led to push the usage of the Bayesian framework. However, there
are varieties of analyses that are mostly done using the frequentist approach. Furthermore,
there is also an increasing trend in the usage of information theory to make forecasts or
to check the consistencies between datasets. In this chapter, we are going to explore these
three different approaches, analysing the mathematical aspects needed to make inference.
The specific application to cosmological problems is postponed to the subsequent chapters.

3.1 Some concepts of probability

The Bayesian and frequentist approaches are both based on their axiomatic definition,
which makes them conceptually different. However, both are based on some basic notions
and definitions that result independent from the particular framework in which we are
working (see, e.g., Ross (1998)). It is clear that to deeply understand them, the notion of
probability is necessary, which will be given in the following sections. Thus, the aim here
is only to assimilate familiarity with the notation.

When we are performing an experiment, we define the sample space S as the collection
of all its possible outcomes, and each of its subsets is indicated as an event (see, e.g., Ross
(1998)). Thus, if we perform a coin tossing experiment, the sample space is the set of tail
(T ) and head (H), S = {T , H}. The two possible events are A1 = {T} and A2 = {H}.
Once we have an event A, we can define its complement with respect to S as Ac ≡ S \A.
With this nomenclature, we would like to quantify the probability that an event occurs.
Usually, this is reached by assigning a measure that goes from the sample space S to the

34
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real interval [0, 1]. We will denote the probability that A occurs as P (A).
Given two events, A and B, the probability that both A and B occur is the joint

probability (or intersection probability), P (A,B) (or P (A ∩B)). The probability that hat
A or B occur is, instead, the union probability, P (A ∪ B). In many situations, however,
we are only concerned with those outcomes that are elements of B. This means that the
original sample space S collapse in its subset B, that become our new sample space. Thus
we define the conditional probability, P (A|B), as the probability of A taking place given
the occurrence of B. In other words, conditional probabilities are just the probabilities
that we apply after revisions of our belief when someone gives us additional information
(B occurs).

Two events are said to be statistically independent if the occurrence of one is indepen-
dent on the occurrence of the other (Caticha 2008; Trotta 2008). This happens if and only
if

P (A,B) = P (A)P (B) . (3.1)

It can be easily shown that this imply

P (A|B) = P (A) . (3.2)

If the two events are not independent, their joint probability is

P (A,B) = P (A|B)P (B) . (3.3)

Given that the two events enter symmetrically in the left-hand side of the above equation,
we might as well write

P (A,B) = P (B|A)P (A) . (3.4)

Equating the two right-hand side of these last two equation, we get Bayes’ theorem:

P (A|B) = P (B|A)P (A)
P (B) . (3.5)

This theorem follows from the relation between joint and conditional probabilities, that
is, it can be derived independently of the Bayesian interpretation of probability.

In many experiments, the elements of sample space are not necessarily numbers. For
example, in our coin tossing experiment the sample space consists of tail and head. This
is achieved through the notion of random variable X, that is a function from the sample
space S into the set of real numbers R (see, e.g., Ross 1998). If the random variable X is
continuous, for every set of real numbers A we define the probability that X ∈ A as

P (X ∈ A) =
∫
A
dx p(x) , (3.6)

where p(x) is called the probability density function (pdf) of the continuous random variable
X.

In physical application, in practice, possible events can always be mapped to numerical
quantities. This means that the random variable corresponds to the physical quantity that
we want to measure, while the measurement itself correspond to the possible outcome of
an experiment (the event). This event can be one-dimensional or a vector, and in both
cases, we are interested in using them (the data) to perform statistical inference about
the underlying physical model. Such kind of problem forces us to introduce an hypothesis
H, that is something testable on the basis of observations. Given the hypothesis, the
natural question arises as to whether or not it (a theory) is supported by data. The
Bayesian method always compares the probability of competing models, while frequentist
hypothesis testing seeks to disprove a hypothesis by showing that the observed data would
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not be likely if the hypothesis were true. From the frequentist point of view, there is no
probability associated with parameters or models, it is only the data that are probabilistic.

At this stage, before entering in the details of the two main probabilistic point of
view, it will be useful to define some quantities and distributions that we will use in the
subsequent chapters. We can start defining the cumulative distribution function (CDF)
as the function of x describing the probability of the measured value being lower than X,
P (X < x) ≡ F (x):

F (x) =
∫ x

−∞
dx′ p(x′) , (3.7)

where p(x) is the pdf of the random variable X. The expected value of any function of a
random variable X, fX(x) is defined as:

E[fX ] = 〈fX〉 =
∫ +∞

−∞
dx fX(x)p(x) . (3.8)

In particular, the expectation value of a random variable itself is the mean. Furthermore,
if X is a random variable with mean µ, then its variance is defined as

V ar[X] = E[(X − µ)2] , (3.9)

and, in general, its n-th moment is given by E[Xn]. If X is an m-dimensional random
variable, then we can define the covariance between Xi and Xj as

Cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)] . (3.10)

In the next subsections, we are going to introduce some of the probability distributions
used in Cosmology and of essential importance for this thesis. We are also going to
enunciate the Central Limit Theorem. These represent only a few of the most widely
applicable distributions that come up very often in statistics. For a more complete overview
on probability distributions see, e.g., Gregory (2005).

Multivariate normal distribution

As we will see, its importance also relies on the fact that it represents the maximum entropy
distribution for a fixed variance (see Sec. 3.4.1). The functional form of a multivariate
Gaussian distribution is

p(x) = 1√
(2π)n|Σ|

exp
{
−1

2(x− µ)>Σ−1(x− µ)
}
, (3.11)

where x is an n-dimensional vector, µ is the mean and | · | indicate the determinant of the
covariance matrix Σ. If x follows a normal distribution with mean µ and covariance Σ it
is often used the notation x ∈ N (x; µ, Σ).

The normal (Gaussian) distribution is the most important and widely used. One of the
reasons why the normal distribution is so useful is because of the Central Limit Theorem
(see below).

Central Limit Theorem

This theorem states that, if X1, X2, . . . , XN are a collection of independent random vari-
able, each with finite expectation value µi and finite variance σ2

i , then the variable

Y =
∑N
i=1 (Xi − µi)∑N

i=1 σ
2
i

, (3.12)

is distributed as a Gaussian with expectation value 0 and unit variance, for N >> 1.
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χ2 distribution

The χ2 distribution with n degrees of freedom is the distribution of a sum of the squares of
k independent standard normal random variables. That is, if X1, . . . , Xn are independent
normal random variables, each with finite expectation value µi and finite variance σ2

i , then
the χ2

n is defined as

χ2
n =

n∑
i=1

(Xi − µi)2

σ2
i

. (3.13)

Its functional form is defined as

p(x = χ2
n) =


1

2n/2Γ(n/2)x
n/2−1e−x/2

0 otherwise
. (3.14)

Here Γ(·) is the Gamma function is defined as

Γ(x) =
∫ ∞

0
dt e−ttx−1 . (3.15)

The mean of this distribution is 〈x〉 = n and the variance V ar[x] = 2n.

Wishart distribution

The Wishart distribution arises in a natural way as a matrix generalization of the χ2

distribution. When the X1, . . . , Xn are p-dimensional random vectors X1, . . . ,Xn rather
than real-valued random variables, such that Xi ∈ N (Xi; 0, Ip), one possible way to
generalize the sum of squares is to form the p× p positive semidefinite matrix

S =
n∑
i=1

XiX>i . (3.16)

This p× p matrix S follows a Wishart distribution with n degree of freedom. For n ≥ p,
its functional form is given by

p(S) = 1
2np/2Γp(n/2)

|S|(n−p−1)/2 exp
{
−1

2Tr
[
V−1S

]}
, (3.17)

where V is the covariance matrix of size p × p. Here Γp(·) is the multivariate gamma
function

Γp(x/2) = πp(p−1)/4
p∏
j=1

Γ
(
x− j + 1

2

)
. (3.18)

3.2 Frequentist interpretation of probability

The main difference between the two schools of thought relies on the definition of prob-
ability. The frequentist definition basically depends on the exact reproducibility of an
experiment. From this point of view, we can define the probability as the number of times
an event occurs divided by the total number of events, in the limit of an infinite series
of equiprobable trials (see, e.g., Ross 1998). It is clear that this definition is in a way
unsatisfactory: nobody can reproduce an experiment in the same way twice, or an infinite
number of times. However, it has the advantage that we can construct probabilities using
rules and then easily interpret the results. Furthermore, it is objective in the sense that,
once the exact experimental setup is defined, any individual can then decide if the null
hypothesis is rejected or not.



CHAPTER 3. OVERVIEW ON DATA ANALYSIS TECHNIQUES 38

This objective school uses basically the theory developed by the Russian mathematician
Kolmogorov, which gave it a solid foundation by using measure theory. It is based on three
axioms (Ross 1998). Let S be the sample space of an experiment, then

(A1) P (A) ≥ 0 , ∀A ∈ S
(A2) P (S) = 1 ,

(A3) P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) ,

if A1, . . . , Ak, . . . are mutually disjoint events of S.

These axioms allows us to derive some basic relation to construct probabilities. Specifically,
if A is an event of the sample space S, then

P (A ∪Ac) = P (A) + P (Ac) = 1 . (3.19)

If A and B are any two events, then

P (A ∪B) = P (A) + P (B)− P (A,B) . (3.20)

3.2.1 Hypothesis testing

In any hypothesis test, the first step is to state the hypothesis as a well-posed true or
false question. Once the hypothesis statement is done, we choose or invent a function
of data points (a statistic) that should be affected by the truth of the hypothesis. The
simplest examples are the arithmetic mean and the variance. Sometimes this function
of data is meant to be an estimate of a parameter in the model, and in this case it is
called an estimator. If the average of this estimator, over all possible data sets of the
same size, is not equal to the “true value”, the estimator is said to be biased. If we
increase the amount of data, this bias will become smaller if our estimator is a good one.
Furthermore, if the bias goes to zero for an “infinitely large” data set, then we say it
is asymptotically unbiased. At this point, we can determine, by analytic or numerical
methods, the probability distribution of the statistic. The last step is to calculate the
statistic with the data and determine if the measured value is improbable if the hypothesis
is true. This is done by “counting” the p fraction of repeated trials under the condition
that the null hypothesis is correct. The smaller it is the more evidence you have against
the null hypothesis. This number p is known as p-value (or significance of the test).
Unfortunately, p-values are often incorrectly viewed as the probability that the hypothesis
is true. However, there is no objective means for deciding the latter without specifying an
alternative hypothesis, H1, to the null hypothesis H0.

3.2.2 The principle of Maximum Likelihood

Many estimators can in principle be defined. One particular choice, and often the only
reasonable one, is the Maximum Likelihood Estimator (MLE), defined as the value that
maximizes the likelihood function. The likelihood is the probability of obtaining the ob-
served data d given the hypothesis H, regarded as a function of H:

L(H) ≡ P (d|H) . (3.21)

It follows that, if the theory is characterized by the values θ of the model parameters, the
likelihood is expressed as a function of the parameters, L(θ). A likelihood L(θ) is not itself
a probability for θ; it is a dimensionless numerical function which, when multiplied by a



CHAPTER 3. OVERVIEW ON DATA ANALYSIS TECHNIQUES 39

prior probability and a normalization factor, may become a probability (Jaynes 2003).
With this notation, we define the MLE value θ̂ML as

θ̂ML ≡ max
θ

L(θ) . (3.22)

It is often more convenient to maximise the logarithm of the likelihood (the “log-likelihood”,
L ≡ logL) instead. Since log function is monotonic, maximising the likelihood is the same
as maximising the log-likelihood.

After an experiment, for each estimation we have to express uncertainty in our knowl-
edge. In the frequentist approach, this is done through the confidence interval, that is a
range of values designed to include the true value of the parameter with some minimum
probability, (see, e.g., Trotta 2017). In particular, if the likelihood function can be approx-
imated as a Gaussian (at least around the peak), we can use the results for a Gaussian
distribution to approximate the probability content of an interval around the MLE esti-
mate for the mean µ. In general, the interval [µmin, µmax] is called a 100α% confidence
interval for the mean µ if P (µmin < µ < µmax) = α. For instance, if α = 0.95, one speaks
of a 95% confidence interval. Note that this does not mean that the interval constructed
from the observed data has 95% probability of containing the true value of the parameter.
In order to speak of probability of the parameter we need the Bayesian framework.

3.2.3 Fisher information and the minimum variance limit

It is important to know that any estimator suffers from an important limitation: there
exists an absolute lower bound on the variance of any estimator of a parameter. To derive
this bound, let us consider the normalized likelihood function∫

dxL(x|θ) = 1 . (3.23)

Differentiating this equation and using the equality ∂L/∂θi = L∂ lnL/∂θi (see, e.g. Frieden
and Gatenby 2006), it follows that∫

dx ∂

∂θi
L(x|θ) =

∫
dxL(x|θ)∂ lnL(x|θ)

∂θi
(3.24)

=
〈
∂ lnL(x|θ)

∂θi

〉
= 0 , (3.25)

where the expected value 〈. . .〉 follows from the definition in (3.8). Differentiating this
again gives the relation

Fij ≡
〈
∂ lnL
∂θi

∂ lnL
∂θj

〉
= −

〈
∂2 lnL
∂θi∂θj

〉
, (3.26)

where Fij is known as the Fisher information matrix. It is the average of the curvature (or
Hessian matrix) of the log-likelihood. If it is evaluated at the maximum of the likelihood,
Fij measures the rate at which the posterior drops off from its maximum in parameter
space on average, i.e. how “pointy” the peak is. Note that the Fisher matrix is not a
function of any data set, but depends on the properties of the statistical model.

Let us now suppose that we have an estimator for the parameter θi, which we denote
θ̂i. Let us define the bias b(θ), which could be zero or not. It follows that∫

dx θ̂i(x)L(x|θ) = θi + b(θ) . (3.27)
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Taking the derivative with respect to θi gives∫
dx θ̂i(x)∂ lnL

∂θi
L = 1 + ∂b(θ)

∂θi
. (3.28)

Using the relation (3.25) follows〈(
θi − θ̂i(x)

) ∂ lnL
∂θi

〉
= 1 + ∂b(θ)

∂θi
, (3.29)

that jointly with the Cauchy-Schwarz inequality give us the relation (see, e.g. Frieden and
Gatenby 2006)[〈(

θi − θ̂i(x)
) ∂ lnL

∂θi

〉]2

≤ V ar
[
θ̂i
]
V ar

[
∂ lnL
∂θi

]
= V ar

[
θ̂i
]
Fij . (3.30)

In other word, we have

V ar
[
θ̂i
]
≥

(
1 + ∂b(θ)

∂θi

)2

Fij
. (3.31)

This relation is known as Cramér-Rao limit, and it is the absolute lower bound mentioned
at the beginning of this subsection. An estimator that reaches this bound is called an
efficient estimator.

The Fisher matrix and the Cramér-Rao limit on the variance are vastly used in cosmol-
ogy as a way of forecasting errors. Nevertheless, this method suffers of several criticisms.
Indeed, the Fisher matrix can be quite different for different fiducial parameter values.
Furthermore, it does not account for degeneracies between parameters, although there are
approximations that try to take this into account. In particular, one can use the expansion
of the likelihood around the MLE θ̂ to approximate the posterior of a future experiment
as

p(θ) ' |F|
(2π)n/2

exp
{
−1

2(θ − θ̂)>F−1(θ − θ̂)
}
, (3.32)

where F−1 represents the parameter covariance matrix. The variance of a single parameter
after marginalizing over all the other parameters is

σ2
i ' F−1

ii . (3.33)

In this approximation one can easily add priors on the parameters from other experiments.
Lets C−1

prior be the inverse covariance of the parameters (or the Fisher) from some previous
experiment. Then, since the log of the posterior is the sum of the log of the likelihood and
the prior it follows

F tot = F + C−1
prior . (3.34)

3.2.4 The Fisher matrix analysis of CMB

When performing a parameter error forecast for future CMB experiments, it is customary
to use the Fisher matrix formalism in which the formal error bar on a given parameter can
be estimated from the derivatives of the observables with respect to the model parameters
around the best-fit point. We have seen that, the Fisher matrix technique allows for a
quick, analytic estimate of the confidence limits by approximating the likelihood function
L(θ) as a multivariate Gaussian function of the theoretical parameters θ.

If we use the Gaussian approximation, Eq. (2.15) can be generalized as

L(θ) ∝ exp
{
−1

2a† [C(θ)]−1 a
}
, (3.35)
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where a = (aT`m, aE`m, ad`m)>, and C(θ) is the theoretical data covariance matrix. Here we
consider lensing through the presence of the harmonic decomposition of the deflection field,
ad`m. Furthermore, we ignore the presence of tensor perturbations. With this likelihood,
Eq. (3.26) becames

Fij =
`max∑
`=2

∑
PP ′,QQ′

∂CPP
′

`

∂θi

(
Cov−1

`

)
PP ′QQ′

∂CQQ
′

`

∂θj
, (3.36)

where PP ′, QQ′ ∈ {TT,EE, TE, dd, Td}, and the matrix Cov` is the power spectrum
covariance matrix at the `-multipole (for its explicit expression see Perotto et al. 2006).

The advantage of the Fisher matrix technique is that it is computationally tractable,
and involves much less numerical machinery than a Markov Chain Monte Carlo exploration
of the parameter space, see Sec. 3.3.3. However, it is important to note that, since L(θ) is
generally a rather complicated function of θ, this approximation will likely lead to incorrect
results, (see, e.g., Perotto et al. 2006). The Taylor expansion is valid only in regions close
to the best fit point. Furthermore, the Fisher matrix is sensitive to small numerical errors
in the computation of the derivatives ∂CPP ′` /∂θi, and elements that are close to zero can
be amplified significantly when inverting the matrix.

3.3 Bayesian interpretation of probability

The Bayesian interpretation defines probabilities as subjective assignments based on ra-
tional thought. In other words, in this framework the probability is a measure of the
confidence of belief about a proposition. That is, the Bayesian approach allows us to
directly compute the probability of any particular theory or particular value of a model
parameter. This is in contrast with the frequentist statistical approach, that can address
only indirectly this issue. Nevertheless, degrees of belief can be mapped onto probabilities
if they satisfy simple consistency rules known as the Cox axioms (Cox 1946). Precisely, let
the degree of belief in proposition A be denoted by B(A). Since its negation corresponds
to its complementary, NOT-A is written as Ac. Furthermore, the degree of belief in a
conditional proposition, A, assuming proposition Y to be true, is represented by B(A|Y ).
The Cox axioms can be stated as:

(A1) Degrees of belief can be ordered; if B(A) is “greater” than B(Y ), and B(Y ) is
“greater” than B(Z), then B(A) is “greater” than B(Z). As a consequence beliefs
can be mapped onto real numbers.

(A2) The degree of belief in a proposition A and its negation Ac are related, i.e. there is
a function f such that

B(A) = f [B(Ac)] . (3.37)

(A3) The degree of belief in a conjunction of propositions A, Y (A AND Y ) is related to
the degree of belief in the conditional proposition A|Y and the degree of belief in
the proposition Y . That is, there is a function g such that

B(A, Y ) = g[B(A|Y ), B(Y )] . (3.38)

If a set of beliefs satisfy these axioms then they can be mapped onto probabilities satisfying
P (FALSE) = 0, P (TRUE) = 1, and 0 ≤ P (A) ≤ 1. The operations for manipulating
probabilities that follow from these axioms are the sum and product rules (Gregory 2005):

P (A|B) + P (Ac|B) = 1 (3.39)
P (A,B|C) = P (A|C)P (B|A,C) (3.40)

= P (B|C)P (A|B,C) . (3.41)
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In the Bayesian approach, probability calculations often fall into one of two categories:
forward probability and inverse probability. Forward probability problems involve a gener-
ative model that describes a process that is assumed to give rise to some data; the task is
to compute the probability distribution or expectation of some quantity that depends on
the data. Like forward probability problems, inverse probability problems involve a gen-
erative model of a process, but instead of computing the probability distribution of some
quantity produced by the process, we compute the conditional probability of one or more
of the unobserved variables in the process, given the observed variables. The underlying
idea behind this inversion follows from the Bayes’ theorem in Eq. (3.5), when we replace
the event A with the hypothesis H made on data, and the event B with the data d itself:

P (H|d) = P (d|H)P (H)
P (d) . (3.42)

This results in a peculiar interpretation of the various objects involved. Precisely, on the
left, we have the posterior probability of the hypothesis, representing our degree of belief
about the hypotesis after we have seen the data d. As we have already seen in Eq. (3.21),
P (d|H) is the likelihood function. The importance of knowing the functional form of the
likelihood is highlighted in inverse probability problems (inference problems), where the
parameters are usually estimated from the experimental data. The quantity P (H) is the
prior probability distribution, which represent our prior knowledge of H before we see the
data. The denominator, P (d), is a normalization called the evidence that, by the law of
total probability, is given by

P (d) =
∫
dHP (d|H)P (H) . (3.43)

Form Eq. (3.42), it is now clear what inversion of probability means. Furthermore, the
relation between prior probability and posterior probability provides a natural way to
update probabilities.

3.3.1 Parameter estimation

The most common use for Bayesian inference is parameter estimation. In this case, the
model is assumed to be true and the hypothesis space of interest concerns the values
of the model parameters θ. Parameter estimation concerns the use of Bayes’ theorem to
determine what one can learn about the values of parameters from data. This corresponds
to the computation of the posterior P (θ|d), which depends on the likelihood function and
our prior knowledge on the parameters. Its information content for the model parameters
is usually compressed in terms of a point estimate and/or an interval for each parameter
θi ∈ θ. Possible summaries of the best-fit values are the posterior mode (most probable
value)

θ̂i = max
θi

P (θi|d) , (3.44)

or the posterior mean
θ̂i = 〈θi〉 =

∫
dθiθiP (θi|d) . (3.45)

Here P (θi|d) corresponds to the marginalization with respect to the other parameters, i.e.

P (θi|d) =
∫
dθ1 . . . dθi−1dθi+1 . . . dθnP (θ|d) . (3.46)

There are cases in which the mode and mean are very different, corresponding to a posterior
pdf asymmetric to be adequately summarized by a single estimate. An allowed range for
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a parameter with probability content C (e.g., C = 0.95 or 95%) is provided by a credible
region, or highest posterior density region, R, defined by (Gregory 2005)∫

R
dθiP (θi|d) , (3.47)

Frequently, a parameterized model have more than one parameter, but we want to
focus the attention on a subset of them. In such problems, the uninteresting parameters
are known as nuisance parameters. As always, the full Bayesian inference is the full joint
posterior PDF for all of the parameters; but its implications for the parameters of interest
can be simply summarized by integrating out the nuisance parameters. Note that this
is one of the most important technical advantages of Bayesian inference over frequentist
statistics. Indeed, there is no general frequentist method for dealing with such parameters;
they are indeed a “nuisance” in frequentist statistics. It follows because the likelihood
function is not a pdf, and therefore it does not makes sense to talk about marginalization
(Jaynes 2003).

3.3.2 Choice of prior

The prior expresses the information one has about the parameters before using the current
data to constrain them. This information might come from a previous experiment or
observation in which case the prior would be the posterior of that experiment. The prior
can also express the theoretically allowed range of a parameter. Sometimes, it needs to be
given by the user.

In the problem of the Bayesian parameter estimation, the actual prior bounds on
a parameter are often unimportant. This happens when the likelihood is “small” at the
boundaries of parameter space. In this case, they do not affect the integral in the evidence,
and the posterior cancels at these points. In other cases, the choice of the prior can largely
affect the resulting posterior distribution. There is a vast literature about how to select
a prior in an appropriate way (Jaynes 2003; Gregory 2005). The mostly used are the
uniform and Jeffreys prior.

The uniform prior (or flat prior) is constant over a region of parameter space and zero
outside of it. Precisely, if the prior is on the parameter θ follows

P (θ) =
{ 1
θmax−θmin

for θmin ≤ θ ≤ θmax

0 otherwise
. (3.48)

With this choice of prior the posterior becomes functionally identical to the likelihood, up
to a proportionality constant. It has the appearance of being unprejudiced in the sense
that it do not favour one parameter value over another without the data supporting it.
However, what is a uniform prior for one set of parameters do not result a uniform prior
for another set. This is true even though they might describe the same model. This is
because, under a change of variable γ ≡ γ(θ), the prior transforms as

P (γ) = P (θ)
∣∣∣∣∂θ∂γ

∣∣∣∣ . (3.49)

It follows that, if the transformation is non-linear a flat prior in θ is no longer flat in γ.
The other widely used prior is the Jeffreys prior defined as

P (θ) =


1

θ ln(θmax/θmin) for θmin ≤ θ ≤ θmax

0 otherwise
. (3.50)

Note that, this prior gives equal weight to equal logarithmic ranges of θ, see Fig. 3.1.
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Figure 3.1: The left panel shows the prior probability density function, P (θ), for the uniform and Jeffreys priors.
The right panel shows the same prior probability as the left panel, but per logarithmic interval, θ × P (θ).

Furthermore, it is invariant under a rescaling transformation, i.e. γ = θx for any x.
Indeed, the probability for a parameter being in an infinitesimal region is

P (γ)dγ = P (γ)xθx−1dθ = xP (θ)dθ . (3.51)

Note that the value of Jeffreys prior is infinite if the range is extended to 0 < θ <∞.
Similarly, the uniform prior is formally zero for the range −∞ < θ < ∞. These ranges
are routinely used when the posterior (likelihood times prior) has a well defined integral.
In other word, sometime the integral of the prior values may not even need to be finite to
get sensible answers for the posterior probabilities. These are examples of improper prior
distributions that are not valid distributions by themselves, but make sense in a posterior.

3.3.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (hereafter MCMC) methods are now becoming the standard
tool to determine parameters from CMB data. It represents a very efficient mathematical
tool to estimate the desired posterior distributions for high-dimensional models. Precisely,
MCMC methods allow us to construct a sequence of points (or samples) in parameter
space (called a chain). In statistics a chain is an ordered series of random variables,
X1, . . . , Xn, . . ., where the conditional probability of each element given the other elements
is specified. In particular, a Markov chain is a chain where the conditional probability
of any element Xn depends only on the previous element Xn−1, P (Xn|X0, . . . , Xn−1) =
P (Xn|Xn−1) (see, e.g. Gregory 2005; Ross 1998). The probability P (Xn+1|Xn) is known
as transitional kernel, since it gives the probability of moving from point Xn to point
Xn+1 in parameter space. If the transition kernel is independent of n it is said to be
time-homogenious.

Among all possible chains, we are interested in the so called ergodic chains. To be
ergodic the chain must be irreducible, that is a chain starting at any state X0 can reach
any other state after a finite number of steps; aperiodic, that is the chain will not return
to the same state after some fixed number of steps and all multiples of this number of
steps; positive recurrent, that is the expectation value for the number of steps between
any two states is finite. The most important consequence of ergodicity is that the chain
has a unique stationary distribution f(x) such that∫ ∞

−∞
dxn f(xn)P (xn+1|xn) = f(xn+1) . (3.52)
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In other word, if we can find a transitional kernel that satisfies this requirement, we
can produce chains whose samples are distributed according to f(x). This stationary
distribution is called target distribution, which in our case is the posterior P (θ|d). Note
that, once samples from the posterior have been gathered, obtaining Monte Carlo estimates
of expectations for any function of the parameters becomes a trivial task thanks the low
of large numbers:

〈g(θ)〉 =
∫
dθg(θ)P (θ|d) ' 1

N

N−1∑
i=0

g(θi) , (3.53)

where θi are generated from the posterior distribution P (θ|d).

Metropolis-Hastings algorithm

The simplest sample generator algorithm is the Metropolis-Hastings (Metropolis et al.
1953; Hastings 1970). It produces a Markov chain whose equilibrium distribution is the
target probability density, with a transition kernel that satisfies the detailed balance con-
dition

P (θn+1|θn)P (θn|d) = P (θn|θn+1)P (θn|d) . (3.54)

The core of this algorithm can be summarized in four points (see, e.g. Gregory 2005):

i) Start the chain from a random point in parameter space, θn.

ii) Propose a candidate point θc extracted from an arbitrarily proposal density distri-
bution q(θn,θc).

iii) Given the posterior evaluated at the candidate point, P (θc|d), compute the ratio r
given by

r = P (θc|d)q(θn,θc)
P (θn|d)q(θc,θn) . (3.55)

- If r ≥ 1, then we update the trial state by setting θn+1 = θc

- If r < 1, then we draw a uniform deviate u between 0 and 1. If r ≥ u, then
we set θn+1 = θc, otherwise θn+1 = θn. It corresponds to accept the proposal
point with probability r.

iv) Repeat all the previous point to fill the chain.

Although the MCMC is guaranteed to converge under the ergodic conditions, it might
take a very long time. The chain moves around parameter space in a random walk and if
it does not reach every region of significant probability many times it will not be a good
approximation of an independent sampling from the target. This can happen if there is
a strong degeneracy between parameters, which explain the needed of a suitable set of
parameters to describe a model, see Sec. 2.4. Furthermore, if the rejection rate is too high
the chain will have many duplicated points that will not fill parameter space in an even
way. On the other hand, if it is too low the chain will move, but not fast enough to get
around the space. The rate with a candidate point is rejected or not can be changed by
adjusting the proposal function q(θc|θn).

In the original algorithm (Metropolis et al. 1953) the proposal distribution is symmet-
ric, q(θn,θc) = q(θc,θn). In this case, the new step is always accepted if it improves on
the posterior, otherwise it is accepted with probability P (θc|d)/P (θn|d). Since we ex-
tract the propose candidate from q(θn,θc), it makes sense to use a standard distribution
with a well implemented random deviate generator. A popular choice is the multivariate
Gaussian centred on the current point with an unspecified covariance C. Thus the new
point is θc = θn + y, where y ∈ N (θn, C). The covariance of this Gaussian needs to be



CHAPTER 3. OVERVIEW ON DATA ANALYSIS TECHNIQUES 46

adjusted until an acceptable rejection rate is found. Reducing it tends to decrease the
rejection rate. When the covariance is large, the proposed new point likely belongs to
regions that are far away from the peak in the probability, and thus are rejected. In this
way, the chain will be attracted by the high probability regions, but might take a while
to get there. This period where the chain is not near its stationary distribution is called
burn in. Note that, for this reason one usually discards the first part of the chain.

Convergence

An important issue relates to the convergence of the chain. Assessing the convergence
of the chain essentially means to know when we can stop. A sophisticated method that
takes into account multiple chains is the Gelman-Rubin diagnostic (Gelman and Rubin
1992), R̂. Precisely, if we have m independent chains each of length n and θαi is the i-th
parameter value of the α-th chain, we can define the following quantities:

θ̄α = 1
n

n∑
i=1

θαi
¯̄θ = 1

m

m∑
α=1

θ̄α (3.56)

s2
α = 1

n− 1

n∑
i=1

(
θαi − θ̄α

)2
B = n

m− 1

m∑
α=1

(
θ̄α − ¯̄θ

)2
(3.57)

W = 1
m

m∑
α=1

s2
α V = n− 1

n
W + 1

n
B (3.58)

The Gelman-Rubin diagnostic is defined as

R̂ =

√
V

W
, (3.59)

and it represent an estimate of the factor by which the variance in θ can be reduced by
continuing the chains. A value R̂ ∼ 1 is a good sign, and this should be compute for all
the parameters of interest.

3.3.4 Likelihood analysis of CMB

The likelihood function represents a key ingredient to compare observed data with the-
oretical predictions in order to constrain the model parameters. Thus the choice of its
functional form is an important task for cosmologists. Precisely, in the context of the
standard cosmological model of the early universe we are able to determine an analyt-
ical form for the probability of the data given the theoretical model. Indeed, we know
that primordial perturbations are Gaussian distributed, and so are CMB fluctuations (see
Sec. 2.2). Therefore, as we have seen, all relevant physical information in the CMB field
are contained in the variance of the distribution. This property makes the full-sky power
spectra of CMB fluctuations a sufficient statistics. In this simple case of full-sky observa-
tions, the likelihood function is given by a Wishart distribution with ν = 2`+ 1 degree of
freedom and dimension p = 3, see Sec. 3.1. Precisely, if we define the variable

Xa = (aT`m, aE`m, aB`m)> , (3.60)

distributed according to a multivariate-Gaussian distribution with covariance matrix

cov(Xa,Xa) =

CTT` CTE` 0
CTE` CEE` 0

0 0 CBB`

 ≡ V` , (3.61)
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in analogy with Eq. (2.17), we can define the estimator

S` ≡
1

2`+ 1
∑
m

XaX†a =

ĈTT` ĈTE` ĈTB`
ĈTE` ĈEE` ĈEB`
ĈTB` ĈEB` ĈBB`

 . (3.62)

It follows that, with this notation, the pdf of the full set of power spectra is given by

p(S`|W`) = L(W`) =
|S`|(ν−p−1)/2 exp

{
−Tr(S`W−1

` )
2

}
2pν/2|W`|ν/2Γp(ν/2)

, (3.63)

were W` = V`/ν, and

Γp(ν/2) = πp(p−1)/4
p∏
i=1

Γ ((ν + 1− i)/2) . (3.64)

Given the observed power spectra, ĈXY` , Eq. (3.63) represents the exact expression of
the likelihood function of CXY` . However, in general, realistic experimental conditions
involves complications in the analysis. These require a likelihood analysis different from
the simple case of full-sky. First of all, specific estimators of the power spectra should be
defined in the partial-sky regime, which take into account spurious correlations between
fields induced by the incomplete sky coverage. Secondly, the use of a Wishart distribution
as a likelihood function is no longer possible. Either the new estimators are no longer
distributed according to a Wishart, and therefore this choice is not exact anymore. Or,
the use of the exact likelihood is unfeasible as one moves to the analysis of smaller scales
(larger multipoles) and higher-resolution maps, due to the huge computational cost of
inverting large covariance matrices. However, as we will see, at large scales and for low-
enough angular resolutions, the exact likelihood in pixel space can still be adopted.

Here we briefly explore two likelihood approximation, referred to the small- and large-
scale regimes, respectively. These represent the basic tools needed to understand the
building procedure of the likelihood package presented in Natale et al. (2020), and sum-
marized in Chap. 4. For a more complete review on CMB likelihood analysis we remand,
for example, to Gerbino et al. (2020).

Small-scale regime

At small scales, the central limit theorem allows to approximate the Wishart distribution
as a Gaussian in the power spectra. In general, quadratic forms in some functions of the
CMB spectra have been adopted as approximate likelihood functions, with various choices
of the covariance matrix. However, here we consider only the approximation used in the
official analyses of the Planck (Planck Collaboration V 2019), the ACT (Louis et al. 2017)
and SPT (Henning et al. 2018a) collaborations, known as fiducial Gaussian approximation.
Precisely, the likelihood is quadratic in CXY` :

− 2 lnL(XC) = −1
2(XC − X̂C)>Y−1

C,fid(XC)(XC − X̂C) + const. , (3.65)

where XC =
(
CTT` , CTE` , CEE`

)>
. The covariance matrix, given by the curvature of the

Wishart,

Y−1
C = ν

2
[
ĈTT` ĈEE` − (ĈTE` )2

]2
×


(ĈEE` )2 −2ĈTE` ĈEE` (ĈTE` )2

−2ĈTE` ĈEE` 2
[
ĈTT` ĈEE` + (ĈTE` )2

]
−2ĈTE` ĈTT`

(ĈTE` )2 −2ĈTE` ĈTT` (ĈTT` )2

 ,

(3.66)
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is computed for a fixed fiducial model, assumed to be smooth and a close approximation
to the underlying model under scrutiny. The constant term include also the determinant
of the covariance matrix.

Large-scale regime

At large angular scales, the resolution of the map to be analysed is low enough to make
a pixel-based approach computationally feasible. Furthermore, the low-resolution makes
also possible to exploit the information encoded in harmonic space, and build the likelihood
function from a simulation-based method.

Here only the pixel-based approach is considered. Its main advantage relies on the
exactness of the likelihood function, even in the cut-sky regime. If we define the data
vector as m = s + n, where s is the signal per pixel in temperature and polarization
(s = (T,Q,U)) and n is the instrumental noise, the likelihood function can be written as

L(C`) = P (m|C`) = 1√
2π|C|

exp
(
−1

2m>C−1m
)
. (3.67)

Here the covariance matrix C is given by the sum of the signal and noise covariance
matrices, C = S + N. The effect of beam smearing, also relevant for the large-scale data,
is now taken into account when constructing the full covariance matrix in terms of the
beam-weighted sum of Legendre polynomial. In evaluating the likelihood function, the
data vector and the noise covariance matrix are fixed, while the signal covariance matrix,
S, is recomputed for any given cosmological model to be compared against data. A detailed
description of the full procedure to obtain the covariance matrix can be found in Appendix
A of Tegmark and de Oliveira-Costa (2001).

The current resolution used in the large-scale pixel-based likelihood analysis is set to
Nside = 161, that means a resolution up to a multipole ` ≤ 4×Nside = 64. This results in a
Npix = 3×12×N2

side = 3×3072 = 9216 pixels involved in the analyses of temperature and
polarization signals, further reduced by the application of the analysis mask. In practice,
only a subsection of S is recomputed, in particular that subsection corresponding to ` < 30.
The portion of S corresponding to multipoles 30 ≤ ` ≤ 64 is precomputed from a fixed
fiducial model, which does not affect the performance of the likelihood.

The varying part of S can be further decomposed as S = V>AV, via a transformation
V that effectively reduces the dimension of the actual evaluation cost from a Npix ×Npix
inversion to a nλ × nλ inversion, where nλ = 2` + 1 is the dimension of the transformed
matrix A. The latter is the only matrix that depends on the theoretical C` and, therefore,
it is the only matrix to be recomputed and inverted. The fixed portions of the covariance
matrix as well as the transformation matrix V can be pre-computed and stored. The
inverse of S can be computed applying the Sherman-Morrison-Woodbury formula (see,
e.g., Appendix B of Planck Collaboration XI 2016).

3.4 Surprise, uncertainties and entropy

The mathematical foundation of information theory relies on the publication of a land-
mark paper by Shannon (Shannon 1948). His attempt was to reproduce at one point either
exactly or approximately a message selected at another point. More precisely, he showed
how information could be quantified with absolute precision, and demonstrated the es-
sential unity of all information media. Telephone signals, text, radio waves, and pictures,
essentially every kind of communication, could be encoded in bits. The use of information

1This corresponds to the HEALPix resolution (see Gorski et al. 2005).
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theory was introduced in statistics only few years later by Kullback and Leibler (Kullback
and Leibler 1951).

The tool by which we can quantify the uncertainty of a probability distribution is
the entropy. The concept of entropy is intimately related with the concept of surprise.
Consider an event A that can occurs when an experiment is performed. A legitimate
question is how surprised would we be to hear that A occurs. As it is reasonable to
suppose, the amount of surprise generated by the information that A has occurred depend
on the probability of A. For instance, if the experiment consists of tossing a coin, then
we would not be too surprised to hear that the event “A = get an head” (P (A) = 1/2),
occurred. On the other hand, if the experiment consists of rolling a pair of dice, we would
certainly be surprised to hear that the event “A = the sum of the dice is 12” (P (A) = 1/36)
occurred. Guided by this example, let us suppose that one feels upon learning that an
event A has occurred depends only on the probability of A. Furthermore, let us denote
with s[p] the surprise evoked by the occurrence of an event with probability p. We can
determine the functional form of the surprise s[p] imposing the validity of four natural
axioms (Ross 1998):

(A1) s[1] = 0, that is there is no surprise in hearing that an event A sure to occur has
indeed occurred.

(A2) s[p] is a strictly decreasing function of p; that is, if p < q, then s[p] > s[q]. This
states that more unlikely an event is to occur, greater is the surprise evoked by its
occurrence.

(A3) s[p] is a continuous function of p.

(A4) If A and B are two independent events, with probability P (A) = p and P (B) = q,
then s[pq] = s[p] + s[q].

It can be shown that, if s[·] satisfies (A1) through (A4), then

s[p] = −K log2 p , (3.68)

where K is an arbitrary positive integer. It is usual to let K equal 1. In this case the
surprise is said to be expressed in unit of bits. If K = − log2 e the surprise is said to be
expressed in unit of nats.

Note that − log p represents the surprise evoked if a random variable X takes the
value x, P (X = x) = p(x). It follows that, if X can take one of the values x1, . . . , xn with
probabilities p1, . . . , pn, the expected amount of surprise associated to the value of X is
given by

S[p] = −
n∑
i=1

pi log pi = 〈s[p]〉 . (3.69)

The quantity defined above represents the entropy of the random variable X. If X is a
continuous random variable, follows

S[p] = −
∫
dx p(x) log p(x) . (3.70)

In information theory, S[p] is interpreted as the average amount of information received
when the value of X is observed. Note that, the average surprise evoked by X, the
uncertainties of X, or the average amount information yielded by X all represent the
same concept viewed from three slightly different point of view.
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3.4.1 Maximum Entropy Principle

The interpretation of the entropy S[p] as a quantitative measure of the amount of missing
information has one remarkable consequence: we have a method to build probabilities
(see, e.g., Caticha 2008). This is a powerful tool since, in general, the knowledge of the
probability distribution of the data as a function of the parameters (the likelihood p(d|θ))
is very limited. Usually, we face only with some statistical properties that are sensitive
to the model parameters in order to predict the shape of p(d|θ). However, we can se-
lect, among all possible probability distributions that agree with whatever we know (a
set of constraints), the distribution that reflects maximum ignorance about everything
else. Thus, since the lack of knowledge is measured by entropy, the method is mathemat-
ically implemented by selecting the distribution that maximizes entropy subject to the
constraints imposed by the available information. This method of reasoning is called the
method of Maximum Entropy, and is often abbreviated as MaxEnt.

The constraints can take any form whatsoever. However, the special case of constraints
that are linear in the probabilities is of particular interest. That is, let us express the
constraints F k in the form of averages of some functions fk

F k = 〈fk〉 =
∫
dx p(x)fk(x) , k = 1, 2, . . . . (3.71)

Introducing the Lagrange multipliers λk associated with the constraints F k, and requiring
that the probability p(x) is normalized, the entropy maximization is achieved setting

0 = δ

δp(x)

[
S[p]− α

(∫
dy p(y)− 1

)
−
∑
k

λkF
k

]
= − log p(x)− 1− α−

∑
k

λkf
k(x) .

(3.72)

The solution is the the so-called canonical distribution

p(x) = exp
{
−λ0 −

∑
k

λkf
k(x)

}
, (3.73)

where we have set λ0 = 1 + α, determined by the normalization constraint

e−λ0 =
∫
dx exp

{
−
∑
k

λkf
k(x)

}
≡ Z(λ1, λ2, . . .) , (3.74)

where we have introduced the partition function Z. Note that, the partition function Z
is closely related to the entropy S[p(x)] through

S[p] = Z +
∑
k

λkF
k , (3.75)

and the values of the multipliers can be explicitly written as a function of the entropy

λi = ∂S

∂F i
. (3.76)

Fisher information and Shannon entropy

The MaxEnt give us the functional form of the likelihood p(d|θ), i.e. Eq. (3.73). It implies
that the dependence on the model goes through the constraints, or, equivalently, through



CHAPTER 3. OVERVIEW ON DATA ANALYSIS TECHNIQUES 51

their associated multipliers. Therefore, it follows that,

∂ ln p(d|θ)
∂θi

= −∂ lnZ
∂θi

−
∑
j

∂λj
∂θi

f j(d)

=
∑
j

∂λj
∂θi

(
F j − f j

)
,

(3.77)

where the last line follows from the chain rule and the fact that

Fk = −∂ lnZ
∂λk

. (3.78)

Thus, since the covariance matrix of the constraints is given by

〈(fi − Fi) (fj − Fj)〉 = ∂2 lnZ
∂λi∂λj

, (3.79)

from the definition of the Fisher matrix, Fij , in Eq. (3.26) follows that (cfr. Carron et al.
(2011)),

Fij =
∑
αβ

∂λα
∂θi

∂2 lnZ
∂λα∂λβ

∂λβ
∂θj

. (3.80)

Furthermore, it can be shown that, using Eq. (3.76) and (3.78),

Fij = −
∑
αβ

∂Fα
∂θi

∂2 lnS
∂Fα∂Fβ

∂Fβ
∂θj

, (3.81)

that represents the total amount of information on the model parameters θ in the data d,
when the model predicts the set of constraints Fk. Note that, the amount of information
given by the entropy S results identical to the Fisher information in a Gaussian distribution
of the observables, despite in this approach Gaussian properties are not assumed (Carron
et al. 2011).

MaxEnt fixing mean and variance

An important application of the MaxEnt principle consist in the maximization of the
entropy when we know the mean µ and the variance σ2 of the parameter in interest. This
problem can be formalized introducing the Lagrange multipliers

L = S[p]− α
(∫

dy p(y)− 1
)
− λ1

(∫
dy (µ− y)2p(y)− σ2

)
. (3.82)

It follows that, imposing δL/δp(x) = 0, the functional form of p(x) is

p(x) = exp
{
−1− α− λ1(µ− x)2

}
. (3.83)

Maximizing L with respect to α and λ1

∂L
∂α

= 0⇒
∫
dy p(y) = 1 = e−1−α

∫
dy e−λ1(µ−y)2 (3.84)

∂L
∂λ1

= 0⇒
∫
dy (µ− y)2 exp

{
−1− α− λ1(µ− x)2

}
= σ2 , (3.85)

we get from Eq. (3.84) that exp (−1− α) =
√
λ1/π, and, by substituting it in Eq. (3.85),

λ1 = 1/(2σ2). Thus, the pdf p(x) that reflects our knowledge of the variance (and thus
the mean) of the parameter is a Gaussian

p(x) = 1√
2πσ2

exp
{
−(x− µ)2

2σ2

}
. (3.86)
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This shows that, among all distributions with a fixed variance, the Gaussian distribution
maximises the entropy S. In particular, if the pdf is a one-dimensional Gaussian, the form
of the Shannon entropy is given by

S = 1
2 ln

[
2πσ2e1

]
. (3.87)

If the pdf is a multivariate normal distribution with dimension n, the Shannon entropy
takes the form

S = 1
2 ln [(2π)n|Σ|en] , (3.88)

where |Σ| is the determinant of the covariance matrix in parameter space.

3.4.2 Kullback-Leibler divergence

A common problem in data analyses is to measure how similar, or different, two probability
distributions are. This issue can be assessed, in the contest of information theory, by the
Kullback-Leibler divergence (KL divergence).

Let us consider two probability density function, p(x) and q(x), of a continuous random
variable X. We can construct the measure of the expected number of the extra nats (i.e.
logarithmic difference) required to describe samples from p(x) using the knowledge of q(x),
instead of p(x) itself. This statement can be expressed in formula as

∆S[p(x)|q(x)] =
∫
dx p(x) log p(x)

q(x) . (3.89)

This quantity is sometimes read as the entropy of p(x) relative to q(x), and thus called
“relative entropy”. It has several properties:

– It is always non-negative, ∆S[p(x)|q(x)] ≥ 0. The equality is reached only when
p(x) = q(x).

– It is invariant under parameter transformations. That is, if the transformation is
made from variable x to variable y(x) then

∆S[p(x)|q(x)] =
∫
dx p(x) log p(x)

q(x)

=
∫
dy

dx

dy
p(y)dy

dx
log

(
p(y) dydx
q(y) dydx

)

=
∫
dy p(y) log p(y)

q(y) .

(3.90)

– It is additive for independent distributions.

Furthermore, if the involved pdf are normally-distributed, p(x) ∼ N (x;µ1,Σ1) and q(x) ∼
N (x;µ2,Σ2), then we can use the analytical expression given by

∆S [p(x)|q(x)] = 1
2 (µ1 − µ2)>Σ−1

2 (µ1 − µ2) +

+ 1
2

[
Tr
(
Σ1Σ−1

2

)
− d− log

(det Σ1
det Σ2

)]
.

(3.91)



CHAPTER 3. OVERVIEW ON DATA ANALYSIS TECHNIQUES 53

Updating probabilities

We have seen that Bayes’ rule is the natural way to update probabilities. However, it
is possible only when the information is in the form of data, i.e. constraints expressed
in the form of data that can be plugged into a likelihood function. How we can update
them when information is not in the form of data remains an open question. MaxEnt,
allowed one to deal with information in the form of constraints on the allowed probability
distributions. Anyhow, MaxEnt can handle arbitrary constraints but not arbitrary priors.

Our goal is to update from the prior distribution q(x) to a posterior distribution p(x)
when new information (a set of constraints) becomes available. The relative entropy can
be used to achieve this goal, since it describes a ranking of the distributions p(x) relative to
the given prior q(x). Furthermore, it can be shown (Caticha 2008) that the only functional
form for the relative entropy that can be used in inductive inference is the KL divergence
defined in Eq. (3.89).



Chapter 4

A novel CMB polarization likelihood package
for large angular scales built from combined
WMAP and Planck LFI legacy maps

In Sec. 2.3.1 we have studied the effect of reionization on the polarization power spectrum.
The presence of a characteristic fingerprint of this epoch makes the measurement of CMB
polarization at large angular scales a crucial step for the determination of the Thomson
scattering optical depth to reionization, τ , which is currently the less constrained of the
ΛCDM parameters. The optical depth, τ, is connected to the integrated amount of free
electrons along the line of sight (cfr. Eq. (2.6)) and provides information on how and when
the first stars and galaxies formed.

Remarkable advancements have been made in this field over the last 15 years. The
WMAP (Hinshaw et al. 2013) and Planck (Planck Collaboration VI 2018) collaborations
have continuously improved the quality of large-scale polarization measurements, which are
known to be notoriously extremely tough to clean from contaminations coming from the
foreground and instrumental systematic effects. The most constraining dataset currently
available is provided by the Planck collaboration (Planck Collaboration I 2018), which
uses the High Frequency Instrument (HFI) measurements at 100 and 143 GHz. Such
results for the Legacy Planck release are presented in Planck Collaboration III (2018) and
Planck Collaboration V (2019), while an improved post-Planck analysis is presented in
Delouis et al. (2019) and in Pagano et al. (2019).

These HFI-based measurements are all specifically designed to determine the reion-
ization optical depth and, thus, they are mainly dedicated to the characterization of the
E-modes power spectrum. This approach, which is consistent with the corresponding likeli-
hood codes delivered, is mainly driven by the difficulty of building reliable noise covariance
matrices and by the relatively high level of residual systematic effects related to dipole
and foreground temperature-to-polarization leakage. Such likelihoods, despite being the
most sensitive to date, do not include the TE spectrum Planck Collaboration V (2019).
Furthermore, they cannot be adapted to handle non-rotationally invariant cosmologies in
a straightforward way and they might need tuned-up simulations for exotic models (see
Planck Collaboration V 2019, Section 2.2.6).

For the Legacy data release, together with the HFI-based likelihood, the Planck col-
laboration has also delivered a map-based likelihood employing observations of the Low
Frequency Instrument (LFI) in the 70 GHz channel. The sensitivity to the reionization
optical depth of the LFI-based likelihood is inferior by more than a factor of two with
respect to the HFI-based likelihood.

The possibility of combining the WMAP and Planck observations to build a “joint”
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dataset that is more constraining was first explored in Lattanzi et al. (2017), using the
data available at the time. However, a combined dataset using the WMAP and Planck
legacy observations of the large-scale polarization is made publicly available only with the
collaborative work of L. Pagano, M. Lattanzi, M. Migliaccio, L. P. Colombo, A. Gruppuso,
P. Natoli, G. Polenta and myself (Natale et al. 2020). The aim of this chapter is to
describe the combined real-space polarization dataset presented in Natale et al. (2020),
which jointly considers the Planck 70 GHz channel and the WMAP Ka, Q, and V bands.
Note that, because of the aforementioned difficulty in dealing with residual systematic
effects in the pixel space (Planck Collaboration V 2019), the HFI CMB channels, such
as 100 and 143 GHz, are not considered in Natale et al. (2020). However, the resulting
dataset, despite still having an overall higher noise than the HFI-based one, allows for an
independent estimation of the reionization optical depth. Moreover, being a real-space
dataset, it is suitable for a number of studies that are not accessible for a spectrum-based
likelihood (see, e.g., Planck Collaboration XXIII (2014); Planck Collaboration XVI (2016))
and it is capable of exploring non-rotationally invariant cosmologies.

4.1 Datasets

In this section, we describe the large-scale WMAP and Planck polarization maps that
were used to build the combined dataset. As already mentioned, as CMB channels, we
considered the 70 GHz channel from Planck LFI (Planck Collaboration II 2018) and the
Ka, Q, and V bands from WMAP (Bennett et al. 2013). In the case of LFI 70 GHz, we used
the full mission map after removing the bandpass and gain-mismatch-leakage correction
maps. These maps, described in (Planck Collaboration II 2018), are part of the Planck
2018 legacy data release, and are publicly available through the Planck Legacy Archive1.
For WMAP, we use the raw nine-year frequency maps, available on the Lambda archive 2.
In principle, we could have also considered the 44 GHz channel from Planck LFI and the
W-band from WMAP as CMB channels. However, we found that both these channels show
excess power, likely to be spurious in origin, after implementing the foreground cleaning
procedure described in Sec. 4.3. For this reason, we decided not to include the 44 GHz and
W-band channels in our analysis. We note that the Planck and WMAP collaborations
made the same choice on similar grounds (Planck Collaboration V 2019; Page et al. 2007).

We employed the K-band from WMAP, LFI 30 GHz, and HFI 353 GHz maps from
Planck as tracers of Galactic foreground emission. These are used both to generate masks
excluding regions dominated by Galactic emissions, and to mitigate the astrophysical
foreground contamination in the remaining parts of the sky, as explained in detail in
Secs. 4.2 and 4.3. At 30 GHz, we used the full-mission, bandpass leakage-corrected map.
For the 353 GHz channel, we selected a map built only from data provided by polarization-
sensitive bolometers (PSB) (Planck Collaboration III 2018), as done in the low-` analysis
presented in Planck Collaboration V (2019). The WMAP K band and Planck 30 GHz
are used as a polarized synchrotron tracer, respectively, for the WMAP and Planck CMB
channels. This follows the prescription of Lattanzi et al. (2017) and Weiland et al. (2018).
The Planck 353 GHz is used as polarized thermal dust tracer for both WMAP and Planck.

Since we are mainly focused on the large angular scales, it appears convenient to work
with low-resolution datasets. Thus, all the maps of the Stokes parameters, m = [Q,U ],
describing the measured linear polarization, were downgraded to a HEALPix resolution
of Nside = 16 (Górski et al. 2005), which corresponds to a pixel size of ∼ 3.7 degrees. A
smoothing kernel was applied to the high-resolution maps prior to the downgrading, which
is meant to avoid aliasing into the large angular scales of the high-frequency power present

1http://pla.esac.esa.int/pla/
2https://lambda.gsfc.nasa.gov/product/map/dr5/m products.cfm
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in the maps. The smoothing was performed in harmonic space, using a cosine window
function (Benabed et al. 2009; Planck Collaboration V 2019). This guarantees that the
signal is left unaltered on the scales of interest, that is, up to multipoles of ` = Nside = 16,
while it is smoothly set to zero on smaller scales, ` > 3×Nside = 48.

The instrumental noise properties of each low-resolution map are described by an asso-
ciated pixel-pixel noise covariance matrix (NCVM). For the LFI channels, the covariance
matrices are presented in Planck Collaboration II (2018). The 70 GHz covariance matrix
has been rescaled in harmonic space in order to match the noise level of the half-difference
of half-ring maps, following the procedure described in Planck Collaboration V (2019).
For the HFI 353 GHz NCVM, we use a downgraded version of the map-making covariance
matrix, which is instead generated at the native high-resolution of Nside = 2048. This
NCVM only accounts for Q and U correlations within the same pixel, while correlations
between different pixels are ignored. Finally, for WMAP we build the NCVMs starting
from the polarization pixel-pixel inverse covariance matrices at Nside = 16 (Res 4) deliv-
ered by the WMAP team and described in (Page et al. 2007; Bennett et al. 2013). The
cosine window function apodization is performed in harmonic space on the eigenvectors
of these low resolution matrices. It is worth noting that although exchanging the order of
the smoothing and downgrading operations is clearly not an option at the map level, due
to the possible presence of sub-pixel structure, it can still be acceptable for the NCVMs.

Since all the (Q,U) NCVMs were convolved with a smoothing function, we added to
them a white noise covariance matrix, with σ2 = (20 nK)2, in order to guarantee that they
are numerically well-conditioned, as in Planck Collaboration V (2019). For consistency,
noise with the same statistical properties has to be added to the corresponding maps.
However, instead of adding a single noise realization to each smoothed data map, as in
Planck Collaboration V (2019), we followed a different procedure, which is described in
Sec. 4.3. This ensures that our results are not biased by a particular realization of the
regularization noise.

Concerning the temperature (T ) map, we always employ the Planck 2018 Commander
solution (Planck Collaboration IV 2018) outside its confidence mask, which leaves 86% of
the sky available. This map was filtered with a Gaussian beam of FWHM 440 arcmin and
downgraded to Nside = 16. Since it is reasonable to assume that the temperature noise at
large angular scales is negligible, we only need to include the regularization noise. Thus, we
modeled the temperature NCVM as a white noise covariance matrix with σ2 = (2µK)2,
as in Planck Collaboration V (2019). We consistently handle such regularization noise
following the same procedure adopted for polarization. Finally, when building the NCVM
of the full TQU maps, we neglect the correlation between temperature and polarization
and set the corresponding off-diagonal blocks in the covariance matrix to zero (Planck
Collaboration XI 2016).

4.2 Polarization masks

In order to efficiently perform the foreground cleaning and the cosmological parameter
estimation, we must remove the pixels of the data map that are most affected by fore-
ground contamination from the analysis. With regard to temperature, we always use the
Commander 2018 confidence mask (Planck Collaboration V 2019) provided by the Planck
collaboration. In this section, we describe how the polarization masks are produced.

In polarization, we built two different sets of masks for WMAP and LFI. For LFI
70 GHz, we used the 30 and the 353 GHz maps as, respectively, synchrotron (s) and dust
(d) tracers, analagously to what is done in Planck Collaboration V (2019). We first
applied a Gaussian smoothing with a full width half maximum (FWHM) of 7.5◦ to these
input maps, taken at their native resolution of Nside = 1024 (30 GHz) and Nside = 2048
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(353 GHz). Then we built maps of the polarization amplitude Ps = α
√
Q2
s + U2

s and
Pd = β

√
Q2
d + U2

d , where the scaling coefficients are set to α = 0.063 and β = 0.0077,
as estimated in Planck Collaboration XI (2016). These two maps were subsequently
downgraded to the HEALPix resolution Nside = 16. From these maps, two separate sets
of masks for synchrotron and dust emission were built as follows. We excluded pixels
where the relevant polarization intensity, Ps or Pd, is greater than a given threshold. This
threshold is expressed in terms of excess intensity with respect to the corresponding mean
value, 〈Ps〉 or 〈Pd〉, over the whole sky. Any pair of synchrotron and dust masks can then be
combined to yield a single foreground mask. Varying the threshold, we were able to build
foreground masks keeping a chosen fraction of the sky. We chose to build, for LFI 70 GHz,
nine different masks with equally spaced sky fractions fsky = 30%, 35%, . . . , 65%, 70%.
We did not consider larger sky fractions because, as we show in Sec. 4.4, we find an
indication of excess residual power in the LFI maps after foreground removal for masks
with fsky > 60%. A subset of the LFI masks is shown in the left panel of Fig. 4.1.

  

Figure 4.1: Left panel: Subset of the masks used in the analysis of the LFI 70 GHz data. Values of the available
sky fraction fsky in each mask are 30%, 40%, 50%, and 60%. Right panel: Subset of the masks used in the analysis
of the WMAP data. Values of the available sky fraction fsky in each mask are 30%, 40%, 50%, and 60%.

Table 4.1: Foreground scalings coefficients from WMAP K-band (α) and Planck 353 GHz (β) to the indicated
WMAP channels.

Channel α β

Ka band . . . . . 0.315 0.0031
Q band . . . . . . 0.163 0.0039
V band . . . . . . 0.047 0.0076

A corresponding set of masks for WMAP channels is built through a similar proce-
dure. Here, we use the WMAP K-band as a tracer for synchrotron emission and Planck
353 GHz for dust. These are rescaled using the coefficients in Lattanzi et al. (2017); for
completeness, these values are also reported in Tab. 4.1 here. In this case, when the mask
structure at intermediate and high latitudes is dominated by the synchrotron emission
(i.e., by the K-band). Thus we decided to adopt the same mask for the three WMAP
bands. This leads to a single set of ten masks, with a sky fraction ranging from 30% to
75% in steps of 5%. A subset of the masks is shown in the right panel of Fig. 4.1.

Finally, with the aim of building a WMAP-Planck LFI combined dataset, we also
produced another set of masks to be used in the analysis of the joint dataset. These were
built by combining pairs of WMAP and LFI masks, taking the pixels that are left available
in at least one of the two masks. In other words, if we think of a mask as the set of all
pixels that can be used in the analysis, the “joint” masks are the union (in the set-theory
meaning of the word) of the individual WMAP and LFI masks. For this reason, the sky
fraction of each combined mask is always equal or larger than the sky fractions of the
individual masks it is built from. For example, the union of the WMAP and Planck LFI
30% masks has fsky ' 35%. We then chose to produce a set of ten masks built as follows.
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The first seven masks are the union of each pair of WMAP and Planck masks with the
same sky fraction fsky = 30%, 35%, . . . , 55%, 60%. The remaining three masks are the
union of the LFI 60% mask with the WMAP 65%, 70% and 75% masks. The reason
behind this choice is, as mentioned above and discussed in more detail in Sec. 4.5, that we
do not consider the LFI masks with fsky > 60% to be suitable for cosmological analyses.
The sky fractions for the set of union masks, together with the individual masks used to
produce them, are summarized in Table 4.2.

Table 4.2: Masks used in the analysis of the joint WMAP-Planck dataset. Each mask is built as the union of the
individual masks, reported in the left column, and leaves the sky fraction reported on the right available for analysis.

Individual fsky (WMAP × Planck LFI) total fsky

30% × 30% . . . 35%
35% × 35% . . . 40%
40% × 40% . . . 45%
45% × 45% . . . 50%
50% × 50% . . . 54%
55% × 55% . . . 59%
60% × 60% . . . 63%
65% × 60% . . . 66%
70% × 60% . . . 70%
75% × 60% . . . 75%

4.3 Methods

In this section, we describe the cleaning procedure and the likelihood approximation used
in cosmological parameter estimation. We pay particular attention to the impact of regu-
larization noise on both scalings and cosmological parameters estimation and, at the end
of the section, we discuss how it can be mitigated.

The cleaning procedure adopted here is based on fitting foreground templates at the
map level (see, e.g., Page et al. 2007; Planck Collaboration XI 2016; Planck Collaboration V
2019). Denoting the linear polarization map at a given frequency, ν, with mP

ν = [Qν , Uν ],
the corresponding foreground-cleaned map m̃P,fc

ν is3

m̃P,fc
ν = mP

ν − ανts − βνtd

1− αν − βν
, (4.1)

where ts (td) and αν (βν) are the tracers and the scaling coefficient for synchrotron (dust)
emission, respectively, described in Sec. 4.1.

If SP and NP
ν are, respectively, the signal and noise covariance matrices at frequency,

ν, the fitted coefficients in Eq. (4.1) are estimated by minimization of the quantity:

χ2
ν =

(
m̃P,fc
ν

)>
C̃−1
ν m̃P,fc

ν , (4.2)

where C̃ν ≡
〈

m̃P,fc
ν

(
m̃P,fc
ν

)> 〉
is the covariance matrix,

C̃ν = SP(Cfid
` ) + NP

ν + α2
νNs + β2

νNd

(1− αν − βν)2 . (4.3)

We note that χ2
ν is a χ2-distributed quantity when considered as a function of the map

but not as a function of the scalings.
3Here “fc” stands for “foreground-cleaned”.
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Here, Ns and Nd are the polarization parts of the NCVMs for the foregrounds tracers.
The signal covariance matrix is built as described in Tegmark and de Oliveira-Costa (2001)
and assumes a fiducial power spectrum, Cfid

` , taken as the Planck legacy best-fit (Planck
Collaboration VI 2018). The inversion of C̃ν , needed to compute the χ2 in Eq. (4.2),
requires the addition of some regularization noise. In particular, we follow the approach
used in the Planck legacy analysis (Planck Collaboration XI 2016; Planck Collaboration
VI 2018) and consider white noise in polarization with rms σ P

r = 20 nK. We thus sum
a random white noise realization, nP

r , with this amplitude to m̃P,fc
ν and add a diago-

nal term, NP
r ≡

(
σ P

r

)2
I, to the covariance matrix (4.3) and then use these regularized

objects to build the χ2 in Eq. (4.2). In the following, we denote the cleaned map with
regularization noise added as mP,fc

ν ≡ m̃P,fc
ν + nP

r and the associated covariance matrix as

Cν ≡
〈

mP,fc
ν

(
mP,fc
ν

)> 〉
= C̃ν + NP

r .

Once αν and βν have been estimated through this minimization procedure, we can de-
fine the cleaned data vector mfc

ν ≡
[
T, mP,fc

ν

]
, with T being the Commander map described

in Sec. 4.1. We write down its likelihood function (cfr. Eq. (3.67)), L(C`) ≡ P (mfc
ν |C`),

as

− 2 logL(C`) = log
∣∣S(C`) + Nfc

ν

∣∣+ (
mfc
ν

)>
(S(C`) + Nfc

ν )−1mfc
ν + const. (4.4)

The NCVM Nfc
ν used in the likelihood analysis is built as follows. The TT block is

consistent with the Commander map having only white regularization noise with rms σT
r =

2µK, while the TQ and TU blocks are vanishing. The polarization part NP,fc
ν of the NCVM

is instead given by

NP,fc
ν =

NP
ν + α2

νNs + β2
νNd + σ2

ανt
s(ts)> + σ2

βν
td(td)>

(1− αν − βν)2 + NP
r , (4.5)

where σαν and σβν are the uncertainties in the estimates of foreground scaling coefficients
and ts,d(ts,d)> is the outer product of the tracer maps.

The addition of regularization noise has a small, but not completely negligible, im-
pact on the determination of the foreground scaling coefficients, and, consequently, on
cosmological parameter estimates. In fact, the extra noise added to the map increases the
scatter of point estimates (e.g., the posterior mean) of parameter values around the true
value. Moreover, the extra term added to the NCVM increases parameter uncertainties.
In what follows, we first assess the magnitude of the former effect at the level of both
scaling coefficients and cosmological parameters. We then illustrate how we manage to
avoid extracting a particular noise realization, which leads to non-negligible scatter (as
compared to the one caused by instrumental noise).

In order to show and quantify the extra scatter in the estimates of α, β and cosmo-
logical parameters induced by regolarization noise, we proceed as follows. We draw 1000
white noise realizations, nr,i (i = 1, . . . , 1000), with an rms of 2µK in temperature and
20 nK in polarization. We then estimate α and β on the Planck 70 GHz channel, following
the procedure illustrated above, using each of the realization just described as the regu-
larization noise map. For the sake of this test, we adopt a mask that retains 50% of the
sky. This procedure results in 1000 Monte Carlo estimates, αi and βi. Once the scaling
coefficients have been obtained, we further proceed with an estimation of the cosmological
parameters

(
log(1010As)

)
i

and τi from the likelihood in Eq. (4.4). We note that in this
last step, we consistently use the same regularization noise used when fitting the scaling
coefficients.

Since the CMB signal and the instrumental noise are the same in each map belonging
to this ensemble, the scatter in the recovered values of the parameters provides an estimate
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of the dependence on the regularization noise realization, at the level of both scalings and
cosmological parameters. The results of this procedure are shown in Fig. 4.2, where we
show the distribution of the αi’s, βi’s, and τi’s with respect to the mean value, in units
of the average uncertainty. We also show the χ2 computed from Eq. (4.2) in units of
σχ2 =

√
2Ndof .

0.8 0.0 0.8 1 0 1

1.8 0.0 1.8

2 2
2

0.3 0.0 0.3
 units

Figure 4.2: Histograms of the expected scatter in the recovered foreground scalings, in the χ2 of the component
separation and in the measured τ due to the regularization noise. For each quantity, we show the distance from the
center of the empirical distribution in units of σ.

We then compute their standard deviation, that is,
√
〈(θ − 〈θ〉)2〉/〈σθ〉, where θ ={

α , β , χ2 , τ
}
. For the synchrotron scaling coefficient, α, the scatter induced by the extra

noise is, on average, 0.27 times the average parameter uncertainty. In other words, 68%
of the αi deviates from 〈α〉 by less than 0.27 × 〈σα〉. The corresponding value for β is
0.38 times the average parameter uncertainty. The χ2 of the cleaned map is the most
affected quantity by the particular realization of regularization noise. In fact, the impact
is, at the 1σ level, at most 0.55 times the expected width of a χ2 distribution with Ndof
degrees of freedom. This extra scatter in the scaling estimates induces a smaller, but
still non-negligible, effect on the final τ determination. The effect on τ , at one standard
deviation of the distribution, equals 11% of its average uncertainty.

Thus, when we add regularization noise, we pay the price of an increased parameter
uncertainty, and we might also be prone to unwanted parameter shifts caused by an
unlucky choice of the actual noise realisation used. For example, a 3-σ noise realization
can easily shift the scalings by ∼1 σ and τ by 0.3 σ. In fact roughly 1% of the noise
realizations in our Monte Carlo resulted in shifts larger than 1 and 0.3σ’s for the scalings
and τ , respectively.

A possible way to avoid large parameter shifts is to somehow average over different
realizations of the regularization noise. In order to do so, we draw Nit = 1000 white noise
realizations nr,i (i = 1, . . . , 1000) with 20 nK rms. For given values of α and β, these are
used to build as many cleaned polarization maps mP,fc

i = m̃P,fc + nr,i and the following
quantity:

χ2 = 1
Nit

Nit∑
i=1

(
mP,fc
i

)>
C−1mP,fc

i . (4.6)

We note that χ2 does not follow a chi-square distribution. It is straightforward to show
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that its expectation value over the regularization noise is〈
χ2
〉

nr
=
(
m̃P,fc

)>
C−1m̃P,fc + Tr

(
C−1NP

r

)
, (4.7)

which is the same as the expectation value of the χ2 built from a single regularized map,
χ2 =

(
mP,fc

)>
C−1mP,fc. Also, this expectation value is different from the value of the

χ2 on the regularization noise-free map,
(
m̃P,fc

)>
C̃−1m̃P,fc. The variance associated to

χ2 is:

Var
[
χ2
]

nr
= 1
Nit

{
4
(
m̃P,fc

)>
C−1NP

r C−1m̃P,fc + 2Tr
[(

C−1NP
r

)2
]}

(4.8)

that, as should be expected, goes to 0 as the number of noise realizations, over which the
average is performed, increases.

For these reasons, we chose to minimize the quantity in Eq. (4.6) to obtain estimates
of the scaling coefficients that are less dependent on the particular realization of regu-
larization noise. Similarly, when estimating cosmological parameters, we performed an
analogous procedure by drawing Nit = 1000 noise realizations in temperature and polar-
ization, and using the average of the quantity defined in Eq. 4.4 over these realizations.
The results of these procedures are presented in the next sections.

4.4 Foreground cleaning

In this section, we discuss the results of the estimation of the syncrotron and dust scaling
coefficients for the different channels in various masks. We also discuss how this leads
to the choice of the “confidence” masks that are used to produce the foreground-cleaned
maps for each channel and how inverse-noise-weighted combinations of these maps are
built.

We clean independently the four cosmological channels (i.e., WMAP Ka, Q and V
bands and Planck 70 GHz), following the template-fitting procedure described in Sec. 4.3.
We thus minimize Eq. (4.6) to estimate the synchrotron, αν , and dust, βν , scaling coeffi-
cients for each map. The final polarization map, m̃P,fc, and polarization noise covariance
matrix, NP,fc, are given by Eqs. (4.1) and (4.5).

Figure 4.3 show the scaling coefficients computed for each cosmological channel in the
masks described in Sec. 4.2. In the bottom panel of each figure, we also show the excess χ2

in units of the expected dispersion,
√

2Ndof , that is: ∆χ2 = (χ2
ν −Ndof)/

√
2Ndof , where

χ2
ν is computed from Eq. (4.2).

We use the ∆χ2 values to select the processing mask to be used in the template fitting.
The rule of thumb is to use the mask with the largest fsky among those with ∆χ2 ≤ 2. The
only exception is represented by WMAP Ka band which shows a sudden change in both
scalings, as well an noticeable increase in the excess χ2 between the 55% and 60% masks
(see Fig. 4.3). In this case, we cautiously choose the to use the 55% mask, even though
the excess χ2 itself remains slightly below 2 also in the 60% mask. We note how similar
jumps between the 55% and 60% masks are evident also in the scalings of the WMAP
Q band, shown in the top-right panel of Fig. 4.3. An interesting case is represented by
WMAP V band (bottom-left panel of Fig. 4.3), for which the ∆χ2 reaches a maximum
in the 55% mask before decreasing for larger masks, without ever reaching the threshold
∆χ2 = 2. In this case we chose the 75% mask. The masks used in the foreground cleaning,
together with the scaling coefficients obtained, are reported in Tab. 4.3. Note that, using
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the scaling relations

αν =
(
ν

νs

)βs
, (4.9)

βν =
(
ν

νd

)βd−1 Bν(Td)
Bνd(Td)

, (4.10)

it is possible to estimate the corresponding spectral index for synchrotron and dust. Here
Td = 119.6 K ,and Bν(Td) is the spectrum of a black body, see (2.1). These are shown in
Tab. 4.3 and are in agreement with the current estimations. It is worth to notice that, a
simple template fitting does not take into account the impact of spatial variability of the
foreground emissions (see e.g., Fuskeland et al. 2014; Krachmalnicoff et al. 2016). Even if
the χ2 shows the stability of our assumption of constant scalings, we perform a simple test
using the V band as tester. We select the 75% mask and we downgrade it to Nside = 2. We
then set to zero all pixel outside the mask with the exception of one of them. We repeat
this procedure covering al pixel out of 48 available and estimate the scaling coefficients.
The result is shown in Fig. 4.4. This test show that there is only one outlier with respect
the assumption of constant scaling for the synchrotron. A further investigation for this
behaviour is left for a future work.
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Figure 4.3: Scaling coefficients for synchrotron and dust (top and middle panels) estimated on different masks for
WMAP Ka (top-left), Q (top-right), V (bottom-left) bands and for the Planck LFI 70 GHz channel (bottom-right).
The bottom panel of each plot shows the excess χ2 in units of

√
2Ndof , i.e., ∆χ2 = (χ2 −Ndof)/

√
2Ndof .

The resulting cleaned maps can then be combined together to build inverse-noise-
weighted maps. In particular, we build two combinations: the first is a “WMAP-only” map
built from the Ka, Q, and V bands, while the second is a joint “WMAP+LFI” map, that
uses the Ka, Q, and V WMAP bands and Planck LFI 70 GHz (hereafter WMAP+LFI).
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Table 4.3: Masks used to produce foreground-cleaned maps for each channel, the corresponding estimates for the
scaling coefficients, and their spectral index.

Channel Mask α βs β βd

Ka band . . . . . 55% 0.3215 ± 0.0039 −1.50 ± 0.02 0.00346 ± 0.00061 2.44 ± 0.16
Q band . . . . . . 55% 0.1651 ± 0.0039 −2.38 ± 0.03 0.00369 ± 0.00063 1.86 ± 0.15
V band . . . . . . 75% 0.0527 ± 0.0027 −3.91 ± 0.05 0.00744 ± 0.00043 1.37 ± 0.06
70 GHz . . . . . . 60% 0.0641 ± 0.0046 −3.59 ± 0.07 0.00966 ± 0.00041 1.21 ± 0.04
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Figure 4.4: Scaling coefficients for synchrotron and dust (left and right panels) estimated on different masks for V
at Nside = 2. Each pixel on the abscissa means that the corresponding pixel is the only one different from zero. The
central shaded region correspond to the one sigma region for the scaling coefficient estimated at the same resolution
using the original mask.

To provide more detail, if m̃P,fc
ν is the final cleaned map of the band, ν, with cor-

responding noise-covariance matrix, NP,fc
ν , the final noise weighted map, mnw , is built

as:

mnw =
[∑
ν

(
NP,fc
ν

)−1
]−1∑

ν

(
NP,fc
ν

)−1
m̃P,fc
ν

= N
∑
ν

(
NP,fc
ν

)−1
m̃P,fc
ν ,

(4.11)

where we define the total noise covariance matrix:

N =
[∑
ν

(
NP,fc
ν

)−1
]−1

. (4.12)

We note that in Eq. (4.11), we use the m̃P,fc
ν with no regularization noise. This is because

we do not want to “bring” the regularization noise into the noise-weighted map as we
want to avoid possible biases in parameter estimates induced by particular realizations
of the regularization noise, as explained in Sec. 4.3. However, we are forced to use the
covariance matrices NP,fc

ν that do include regularization noise since, otherwise, we would
not be able to invert them. For this reason, it is evident that N would be the NCVM of
a noise-weighted combination built from the (un-tilded) mP,fc

ν , but is not the NCVM of
mnw. The actual NCVM can be computed by rewriting Eq. 4.11 as

mnw = N
∑
ν

(
NP,fc
ν

)−1 (
s + nt

ν − nr
ν

)
, (4.13)

where nt
ν denotes the total noise, i.e., the sum of instrumental and regularization noise,
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at each frequency. Taking the expectation value of mnw(mnw)T yields

〈mnw(mnw)T〉 = S +N
∑
ν ν′

(
NP,fc
ν

)−1
〈(nt

ν − nr
ν)(nt

ν′ − nr
ν′)T〉

(
NP,fc
ν′

)−1
N

= S +N −
(
σ P

r

)2
N
∑
ν

[(
NP,fc
ν

)−1
]2
N ,

(4.14)

where we are assuming that the regularization noise rms σ P
r for all the involved maps is

the same. In the last equation, we use the fact that 〈nt
νnr

ν′〉 = 〈nr
νnr

ν′〉 =
(
σ P

r

)2
Iδνν′ .

Thus, the final noise covariance matrix of the combined instrumental noise is

N ≡ N −
(
σ P

r

)2
N
∑
ν

[(
NP,fc
ν

)−1
]2
N . (4.15)

4.5 Power Spectra

In this section, we present our results for the angular power spectra of the maps described
in the previous sections. In particular, we use a QML code (Tegmark 1996; Tegmark and
de Oliveira-Costa 2001) to extract the auto power spectra of the cleaned maps described
in Sec. 4.4. In our analysis, power spectra are not directly used for the cosmological
parameter extraction. We mainly use them as a probe of possible residual systematics in
the maps and, consequently, for selecting the masks suitable for the likelihood analysis.
The main tool for performing these consistency tests is the χ2 in harmonic space, defined
as:

χ2
h =

`max∑
`,`′=2

(C` − Cth
` ) M−1

``′ (C`′ − Cth
`′ ) , (4.16)

where C` is the power spectrum estimated from a given map-and-mask combination, M−1
``′

is the Fisher matrix and Cth
` is the power spectrum of a fiducial ΛCDM model with

optical depth of τ = 0.065 and logarithmic amplitude of primordial scalar fluctuations of
ln(1010As) = 3.0343. We perform separate tests for the TE, TB, EE, EB, and BB power
spectra. The quantity in Eq. (4.16) can be compared to the χ2 distribution with `max − 1
degrees of freedom, computing the corresponding probability-to-exceed (hereafter PTE).
In Tables 4.4, 4.5, and 4.6, we report the PTEs for LFI, WMAP and WMAP+LFI for
different sky fractions, corresponding to the masks presented in Sec. 4.2. As explained
in that section, for the WMAP+LFI dataset, the masks are obtained by combining the
individual LFI and WMAP masks. We refer the reader to Table 4.2 for further details.

Here, we consider 2 ≤ ` ≤ 10, which corresponds roughly to the multipole range
affected by the reionization feature. For WMAP, the PTEs are nicely compatible with
the theoretical model for all the sky fractions considered. For the LFI dataset we see
∼ 2σ deviations for the BB spectrum for intermediate sky fractions (fsky = 40% and
fsky = 45%), fluctuations reabsorbed in larger sky fractions. In the WMAP+LFI dataset,
we do not see any particular failure in the PTEs. We define a “failure” as a PTE < 1%.

We further perform additional consistency tests for the combined dataset. We compute
the PTEs for different choices of `max, exploring the χ2 consistency up to ` = 15 and
` = 29. For all the sky fraction we have considered, we do not observe any failure in the
total PTEs as a function of `max. We also compute the `-by-` PTEs for all the polarization
power spectra. The mask keeping a 54% fraction of the whole sky has the lowest number
of outliers above 2.5σ: only 3 out of a total 140 analysed multipoles. As we explain in
Sec. 4.6, the 54% mask also represents a robust choice for the likelihood analysis. The
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Table 4.4: Probability to exceed χ2
h for LFI 70 GHz as a function of the sky fraction. The maximum multipole used

to compute χ2
h is `max = 10.

PTE [%]

Sky Fraction TE EE BB TB EB

30% . . . . . 62.2 87.7 16.0 56.2 74.2
35% . . . . . 49.9 75.3 38.5 32.8 51.6
40% . . . . . 24.6 72.7 4.1 38.7 51.3
45% . . . . . 15.6 56.2 5.5 46.7 60.6
50% . . . . . 25.7 43.9 23.5 45.3 83.4
55% . . . . . 23.1 34.8 34.8 23.4 97.4
60% . . . . . 29.9 35.4 20.4 35.2 97.9

Table 4.5: Probability to exceed χ2
h for WMAP as a function of the sky fraction. The maximum multipole used to

compute χ2
h is `max = 10.

PTE [%]

Sky Fraction TE EE BB TB EB

30% . . . . . 64.3 71.7 50.3 59.9 92.6
35% . . . . . 91.3 32.5 81.3 29.0 97.2
40% . . . . . 84.1 70.8 79.4 23.2 90.4
45% . . . . . 82.2 91.0 92.6 19.5 61.0
50% . . . . . 74.8 73.6 84.5 22.8 36.2
55% . . . . . 81.7 95.3 65.3 21.3 50.0
60% . . . . . 70.7 94.2 58.3 21.1 83.1
65% . . . . . 57.5 92.2 66.2 20.4 75.2
70% . . . . . 53.2 85.8 69.7 34.9 78.3
75% . . . . . 55.7 85.4 67.7 37.5 63.5

Table 4.6: Probability to exceed χ2
h for the WMAP+LFI dataset as a function of the sky fraction. The value of

maximum multipole used is fixed to `max = 10.

PTE [%]

Sky Fraction TE EE BB TB EB

35% . . . . . 41.8 80.6 11.2 15.9 11.4
40% . . . . . 55.6 92.5 25.8 14.7 35.1
45% . . . . . 37.6 93.5 17.4 18.0 12.7
50% . . . . . 26.7 86.4 37.9 11.1 27.8
54% . . . . . 31.9 91.6 36.6 5.8 33.5
59% . . . . . 40.4 84.3 25.7 4.9 22.2
63% . . . . . 35.3 85.3 37.1 12.4 50.2
66% . . . . . 69.0 98.4 13.2 38.9 69.1
70% . . . . . 72.3 97.8 26.9 50.3 74.1
75% . . . . . 77.1 96.4 30.2 50.3 80.5

results of the PTEs computation for the combined dataset analysed in the 54% mask are
reported in Table 4.7 and Table 4.8.

The spectra for WMAP, LFI and WMAP+LFI are shown in Fig. 4.5, in their own
50%, 50%, and 54% masks, respectively.

4.6 Likelihood and validation

In this section, we show the results of additional consistency tests performed at the level
of parameter estimation. This allows us to test and validate both the datasets produced
and the likelihood algorithm.
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Table 4.7: Probability to exceed χ2
h for the combined dataset WMAP+LFI for different choices of `max. Here the

mask used to extract the power spectra is the combined mask with fsky = 54%.

PTE [%]

Spectrum `max = 10 `max = 15 `max = 29

TE . . . . . . . . . 31.9 54.2 66.5
EE . . . . . . . . . 91.6 98.4 98.5
BB . . . . . . . . . 36.6 32.8 14.8
TB . . . . . . . . . 5.8 12.9 32.7
EB . . . . . . . . . 33.5 58.7 56.2

Table 4.8: Probability to exceed χ2
h for the WMAP+LFI dataset `-by-`. Here the mask used to extract the power

spectra is the combined mask with fsky = 54%.

PTE [%]

Mulitpole TE EE BB TB EB

2 . . . . . . . . . 21.1 71.9 98.9 51.9 34.4
3 . . . . . . . . . 20.6 26.8 11.8 5.7 7.2
4 . . . . . . . . . 87.0 77.8 65.9 33.7 68.4
5 . . . . . . . . . 6.0 56.5 27.2 17.3 48.3
6 . . . . . . . . . 44.9 44.9 60.9 49.0 4.5
7 . . . . . . . . . 99.3 36.4 94.4 1.7 90.6
8 . . . . . . . . . 33.3 73.1 6.5 11.0 20.0
9 . . . . . . . . . 16.4 36.6 18.9 40.4 55.0
10 . . . . . . . . 63.8 79.0 30.7 66.6 97.1
11 . . . . . . . . 20.8 95.4 91.1 24.7 98.3
12 . . . . . . . . 47.1 53.1 33.0 27.9 67.3
13 . . . . . . . . 85.4 53.7 13.8 38.2 24.7
14 . . . . . . . . 70.3 48.5 61.7 58.9 50.6
15 . . . . . . . . 73.1 72.9 19.1 94.5 94.6
16 . . . . . . . . 94.3 71.1 84.4 42.2 43.1
17 . . . . . . . . 8.0 21.4 50.1 28.8 64.0
18 . . . . . . . . 93.7 73.1 0.9 59.0 71.5
19 . . . . . . . . 60.2 60.5 55.5 38.4 26.1
20 . . . . . . . . 80.6 48.1 96.1 14.5 18.5
21 . . . . . . . . 24.0 38.6 84.3 43.1 49.1
22 . . . . . . . . 81.0 72.0 70.6 81.3 54.6
23 . . . . . . . . 19.6 62.0 0.7 60.7 1.0
24 . . . . . . . . 41.0 13.3 74.1 85.1 67.9
25 . . . . . . . . 84.0 33.1 60.8 71.8 38.4
26 . . . . . . . . 9.9 27.1 13.2 36.0 31.4
27 . . . . . . . . 66.5 30.1 93.9 68.8 47.7
28 . . . . . . . . 29.8 86.1 94.4 26.6 33.4
29 . . . . . . . . 60.3 38.8 22.5 12.3 95.1

Parameter estimates are obtained from the likelihood function in Eq. (4.4). Since we
are using low-resolution maps with Nside = 16, only the C`’s from ` = 2 to `cut = 29
are varied in accordance to the theoretical model that is being tested, when computing
the signal covariance matrix; multipoles between `cut + 1 = 30 and `max = 64 are instead
fixed to a fiducial ΛCDM spectrum (Page et al. 2007; Planck Collaboration XI 2016;
Planck Collaboration V 2019). We follow the procedure described in Sec. 4.3 in order to
marginalize over the regularization noise.

As consistency test for the likelihood, we explore the stability of the reionization optical
depth τ constraints with respect the mask used for cosmological parameter estimation.
Thus, keeping fixed the underlying datasets (i.e., map and associated covariance matrix)
we only change the cosmological parameter mask used in Eq. 4.4. The results of these
test are reported in Fig. 4.6 , respectively, for LFI, WMAP and WMAP+LFI. Visually
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Figure 4.5: Polarization power spectra of the LFI 70
GHz, WMAP bands and WMAP+LFI. The sky frac-
tions used are respectively 50%, 50%, and 54%. The
dashed lines represent a ΛCDM power spectra corre-
sponding to an optical depth value of τ = 0.065.
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Figure 4.6: Estimates of τ from the LFI 70 GHz map
(top), for the combination of WMAP Ka, Q and V
bands (middle), and for the WMAP+LFI dataset (bot-
tom) analysed in different masks. In this plots, the
points represent the best-fit values and the red and yel-
low bars represent the 68% and 95% C.L., respectively.
The vertical grey line represents the best-fit value for
the WMAP+LFI baseline dataset, which uses 54% of
the sky; see text for details.

all the τ constraints are nicely compatible with each other for LFI and WMAP. For the
WMAP+LFI, the τ posteriors are still visually compatible with each other, but we observe
a clear trend towards high values of τ for large sky fractions. It is worth mentioning that
all the masks we are using for a given dataset are nested, and largely overlapped, so
relying on a simple visual comparison can be misleading and we need a more accurate
statistical test to assess consistency. Thus, for each dataset, we generated a Monte Carlo
of 1000 CMB maps, with τ = 0.065 and a set of realistic noise simulations extracted
from the noise covariance matrix of the cleaned datasets (Eq. 4.5 and Eq 4.15) through
Cholesky decomposition. For every mask, we processed all those maps through a pixel-
based likelihood algorithm implementing the function in Eq. (4.4), fitting τ and ln(1010As)
from a grid of models. All the other ΛCDM parameters were kept fixed to the best-
fit of Pagano et al. (2019). Then we were able to build the statistics of the difference
∆τij ≡ |τi − τj | between the τ estimates for each pair of masks {i, j}, and, finally, compare
this with the values of ∆τij obtained from the real data
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In Table 4.9, we report the PTEs for the three datasets analysed, defined as the
percentage of simulations that have an absolute parameter shift larger than the same
quantity measured on the data. As explained above, the simulations used for this test
contain only the CMB signal and noise drawn by cleaned map covariance matrix. We
note that foreground residuals and, thus, chance correlations between such residuals and
noise realisations are not included in the simulations; this makes the test conservative
since it is more difficult to pass. The scatter we see on the data is perfectly compatible
with the signal plus noise simulations, independently for LFI and WMAP, and for all the
sky fractions considered. The WMAP+LFI dataset, instead, shows mild failures for sky
fractions larger than 60%. This comes as some of a surprise since the corresponding results
based on WMAP show excellent PTEs (see, e.g., columns 2 and 3 of Table 4.9). Again, we
verified that the shift between the ∆τ for WMAP and WMAP+LFI are compatible with
what is seen in our signal plus noise simulations. We find that all the shifts are within
2-σ. This indicates that as far as τ is concerned, all masks return consistent values and
may be thus used in the analysis. However, we remark that there is a clear trend towards
larger values of τ for masks with a sky fraction larger than fsky=63% (again, see Fig. 4.6).
Based on these considerations and on the fact that this is the one performing better in
the `-by-` tests described in Sec. 4.5, we opt for a conservative choice and select the 54%
mask as the baseline for WMAP+LFI. This dataset provides an error on τ that is 12%
smaller than the one obtained from WMAP on the 75% mask.

For the baseline mask, in Table 4.10, we report the constraints on τ , ln(1010As), both
with r = 0 and variable r from the low-multipole dataset alone, having fixed the other
ΛCDM parameters to the best-fit of Pagano et al. (2019). In the next section, we offer a
detailed discussion on the τ constraints and its consequences for the cosmological scenario.

4.7 Reionization constraints

The CMB large-scale polarization data provide an almost direct measurement of the optical
depth to reionization, being CEE

` ∝ τ2 and CTE
` ∝ τ for multipoles ` . 20. In this

section, we use the WMAP+LFI dataset in polarization, together with the Commander
2018 solution in temperature, to derive updated constraints on τ from CMB measurements
at low frequencies.

For the cosmological parameter tests presented in this PhD thesis, we adopted the
reionization model given in Lewis (2008). This is the default model in camb4 and it
has been used for the Planck baseline cosmological results (TANH). In this model, the
phase change in the intergalactic medium from the almost completely neutral state (up
to a residual ionization fraction of 10−4, remaining after recombination) to the ionized
state is described as a sharp transition. The hydrogen reionization is assumed to happen
simultaneously with the first reionization of helium, whereas the second reionization of
helium is fixed at a redshift of z = 3.5 and is, again, described as a sharp transition.
This choice is motivated by the expectations drawn from quasar spectra. Nevertheless, we
expect the modeling of the helium double ionization to have a minor impact on the final
results because varying the corresponding reionization redshift between 2.5 and 4.5 changes
the total optical depth by less than 1% (Planck Collaboration Int. XLVII 2016). For the
tests presented in this chapter, we did not explore different reionization models, however,
it has been shown in Planck Collaboration VI (2018) that τ constraints from the latest
Planck data have little sensitivity with regard to the actual details of the reionization
history. Furthermore, earlier claims by Heinrich and Hu (2018) of a mild evidence, in
Planck 2015 LFI data, for a more complex model of the ionization fraction, with hints
of early reionization, have not been confirmed by alternate analyses of the same data set

4https://camb.info
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Table 4.9: Consistency of the τ parameter values estimated on different masks. For each pair of masks defined
in Sect. 4.2, we report the percentage of simulations with absolute parameter shift larger than the same quantity
measured on the data. Each column corresponds to a different dataset, LFI (left), WMAP (center), and WMAP+LFI
(right).

LFI PTE [%] WMAP PTE [%] WMAP+LFI PTE [%]

Masks |∆τ | Masks |∆τ | Masks |∆τ |

30%−35% . . . 49.0 30%−35% . . . 84.3 35%−40% . . . 56.9
30%−40% . . . 21.3 30%−40% . . . 21.1 35%−45% . . . 38.0
30%−45% . . . 27.2 30%−45% . . . 33.4 35%−50% . . . 72.3
30%−50% . . . 36.4 30%−50% . . . 49.0 35%−54% . . . 76.0
30%−55% . . . 40.3 30%−55% . . . 49.7 35%−59% . . . 55.9
30%−60% . . . 54.0 30%−60% . . . 49.6 35%−63% . . . 54.1
35%−40% . . . 21.2 30%−65% . . . 65.6 35%−66% . . . 37.6
35%−45% . . . 33.4 30%−70% . . . 71.6 35%−70% . . . 26.5
35%−50% . . . 52.8 30%−75% . . . 71.4 35%−75% . . . 17.6
35%−55% . . . 56.6 35%−40% . . . 15.9 40%−45% . . . 46.0
35%−60% . . . 79.6 35%−45% . . . 22.8 40%−50% . . . 97.5
40%−45% . . . 95.8 35%−50% . . . 43.1 40%−54% . . . 96.2
40%−50% . . . 75.5 35%−55% . . . 48.8 40%−59% . . . 74.9
40%−55% . . . 80.2 35%−60% . . . 47.3 40%−63% . . . 71.7
40%−60% . . . 55.1 35%−65% . . . 63.4 40%−66% . . . 48.5
45%−50% . . . 69.7 35%−70% . . . 72.7 40%−70% . . . 32.9
45%−55% . . . 76.3 35%−75% . . . 73.7 40%−75% . . . 18.6
45%−60% . . . 50.6 40%−45% . . . 91.5 45%−50% . . . 34.6
50%−55% . . . 95.6 40%−50% . . . 67.0 45%−54% . . . 49.6
50%−60% . . . 58.3 40%−55% . . . 79.1 45%−59% . . . 88.7
55%−60% . . . 40.8 40%−60% . . . 83.5 45%−63% . . . 96.8
. . . . . . . . . . . . . . − 40%−65% . . . 64.5 45%−66% . . . 68.7
. . . . . . . . . . . . . . − 40%−70% . . . 56.2 45%−70% . . . 46.9
. . . . . . . . . . . . . . − 40%−75% . . . 58.1 45%−75% . . . 29.7
. . . . . . . . . . . . . . − 45%−50% . . . 63.1 50%−54% . . . 92.9
. . . . . . . . . . . . . . − 45%−55% . . . 78.1 50%−59% . . . 58.5
. . . . . . . . . . . . . . − 45%−60% . . . 83.6 50%−63% . . . 56.1
. . . . . . . . . . . . . . − 45%−65% . . . 59.2 50%−66% . . . 29.1
. . . . . . . . . . . . . . − 45%−70% . . . 52.6 50%−70% . . . 16.6
. . . . . . . . . . . . . . − 45%−75% . . . 55.1 50%−75% . . . 7.7
. . . . . . . . . . . . . . − 50%−55% . . . 87.3 54%−59% . . . 32.7
. . . . . . . . . . . . . . − 50%−60% . . . 83.3 54%−63% . . . 37.8
. . . . . . . . . . . . . . − 50%−65% . . . 77.9 54%−66% . . . 13.4
. . . . . . . . . . . . . . − 50%−70% . . . 66.5 54%−70% . . . 6.5
. . . . . . . . . . . . . . − 50%−75% . . . 68.7 54%−75% . . . 3.2
. . . . . . . . . . . . . . − 55%−60% . . . 87.9 59%−63% . . . 78.6
. . . . . . . . . . . . . . − 55%−65% . . . 55.1 59%−66% . . . 18.6
. . . . . . . . . . . . . . − 55%−70% . . . 45.0 59%−70% . . . 8.0
. . . . . . . . . . . . . . − 55%−75% . . . 49.9 59%−75% . . . 3.4
. . . . . . . . . . . . . . − 60%−65% . . . 33.4 63%−66% . . . 7.2
. . . . . . . . . . . . . . − 60%−70% . . . 30.5 63%−70% . . . 3.3
. . . . . . . . . . . . . . − 60%−75% . . . 36.6 63%−75% . . . 1.5
. . . . . . . . . . . . . . − 65%−70% . . . 59.9 66%−70% . . . 14.0
. . . . . . . . . . . . . . − 65%−75% . . . 66.5 66%−75% . . . 4.1
. . . . . . . . . . . . . . − 70%−75% . . . 95.7 70%−75% . . . 12.2
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Table 4.10: Constraints on ln(1010As), τ , and r from the WMAP+LFI likelihood. We show mean and 68 %
confidence levels. For r, the 95 % upper limit is shown.

Parameter ΛCDM ΛCDM + r

ln(1010As) . . . 2.978± 0.050 2.82+0.15
−0.08

τ . . . . . . . . . . . 0.069+0.011
−0.012 0.067+0.011

−0.012
r0.002 . . . . . . . . . . . ≤ 0.79
109Ase

−2τ . . . 1.715+0.081
−0.092 1.48+0.20

−0.14

(e.g., Villanueva-Domingo et al. (2018); Hazra and Smoot (2017); Dai et al. (2019); Hazra
et al. (2019)). In particular, Millea and Bouchet (2018) have shown how the significance
of those findings has been likely overestimated due to the choice of unphysical priors.

Having fixed the reionization model, first of all, we want to study the constraints from
the large scales alone. Using the pixel-based likelihood framework of Sec. 4.6 (lowTEB),
we only fit for τ , ln(1010As), and r, while keeping all the other ΛCDM parameters fixed
to the best-fit values given in Pagano et al. (2019). Our results are shown in Table 4.10,
where the parameter, r, is estimated at a scale of k = 0.002 Mpc−1. The derived constraint
on τ is

τ = 0.069+0.011
−0.012 (68%, lowTEB), (4.17)

which corresponds to a 5.8σ detection from the low-frequency CMB polarization data.
We then extended the analysis to include data from the small scales, specifically adding

the Planck 2018 likelihood for TT, TE, EE angular power spectra (Planck Collaboration V
2019). This time, we let all the six base ΛCDM parameters vary, and we sampled from the
space of possible cosmological parameters with an MCMC exploration using CosmoMC
(Lewis and Bridle 2002). The reionization optical depth estimated in this case is5:

τ = 0.074+0.010
−0.011 (68%, TT,TE,EE). (4.18)

The parameter constraints we derived for pure ΛCDM are given in Table 4.11, where, for
the purposes of comparison, we also report the Planck 2018 baseline results. The two
compared datasets differ by the low-` likelihoods. In one case, there is the pixel-based
likelihood developed in this thesis (lowTEB), while in the other case, the low-` likelihood
is a combination of the Blackwell-Rao estimator for the Commander temperature solution
and the E-mode power spectrum based Planck Legacy HFI likelihood (lowE). The latter
likelihood provides a constraint on τ that is about 1.5 times tighter and 1.4σ lower in
value than the one we obtain from the WMAP+LFI likelihood. Due to the well known
degeneracy between As and τ , this also translates to a 33% tighter constraint on ln(1010As)
and 1.8σ lower in value. All the other cosmological parameters, rather, are in good
agreement, differing by at most 36% of the σ. A similar tendency is also found when
comparing Table 4.11 with an analogous analysis shown in Pagano et al. (2019).

Comparing the constraints from Table 4.10 and Table 4.11, we note that the values of
ln(1010As) and τ derived from the large scales alone are 1.9σ and 0.4σ lower, respectively.
This behaviour was first noticed in Planck Collaboration XI (2016) and it is known to
be induced by the low-` anomaly, that is, the power deficit in the measured TT power
spectrum with respect to the best-fit model at multipoles between ` = 20 and 30. When
limiting the analysis to the large scales, that is, to multipoles up to 30, the deficit has a
high relative weight in the final solution, leading to a value of the overall amplitude of the
spectrum that is lower than the one from the full analysis, which includes multipoles up

5In the following, the presence of the lowTEB dataset should be always understood.
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Table 4.11: Parameter constraints for the ΛCDM cosmology (as defined in Planck Collaboration XVI 2014), illus-
trating the impact of replacing the low-` baseline Planck 2018 likelihood (lowE) with the WMAP+LFI likelihood
presented in this thesis (lowTEB). We also show the change when including the high-` polarization likelihood in the
analysis.

TT+lowE TT+lowTEB TTTEEE+lowE TTTEEE+lowTEB
Parameter 68 % limits 68 % limits 68 % limits 68 % limits

Ωbh
2 . . . . . . . . 0.02212± 0.00022 0.02218± 0.00022 0.02236± 0.00015 0.02241± 0.00015

Ωch
2 . . . . . . . . 0.1206± 0.0021 0.1200± 0.0021 0.1202± 0.0014 0.1197± 0.0014

100θMC . . . . . 1.04077± 0.00047 1.04086± 0.00047 1.04090± 0.00031 1.04096± 0.00031
τ . . . . . . . . . . . 0.0522± 0.0080 0.071+0.010

−0.011 0.0544+0.0070
−0.0081 0.074+0.010

−0.011

ln(1010As) . . . 3.040± 0.016 3.076± 0.021 3.045± 0.016 3.082± 0.021
ns . . . . . . . . . . 0.9626± 0.0057 0.9645± 0.0058 0.9649± 0.0044 0.9664± 0.0044
H0 . . . . . . . . . . 66.88± 0.92 67.12± 0.93 67.27± 0.60 67.51± 0.61
Ωm . . . . . . . . . 0.321± 0.013 0.317± 0.014 0.3166± 0.0084 0.3134± 0.0084
ΩΛ . . . . . . . . . . 0.679± 0.013 0.683± 0.013 0.6834± 0.0084 0.6866± 0.0084
σ8 . . . . . . . . . . 0.8118± 0.0089 0.825± 0.010 0.8120± 0.0073 0.8259± 0.0091
zre . . . . . . . . . . 7.50± 0.82 9.3± 1.0 7.68± 0.79 9.51+0.98

−0.97

109As . . . . . . . 2.092± 0.034 2.167+0.043
−0.049 2.101+0.031

−0.034 2.181+0.043
−0.049

109Ase
−2τ . . . 1.884± 0.014 1.882± 0.014 1.884± 0.012 1.882± 0.012

Age/Gyr . . . . 13.830± 0.037 13.819± 0.037 13.800± 0.024 13.791± 0.024

to ` = 2500. Due to the aforementioned degeneracy, this also results in a lower value for
τ .

Since one of the main results of this chapter is the τ constraint from the WMAP+LFI
dataset, we want to further comment on the robustness of this result. In Fig. 4.7, we show
the good agreement between the estimates of τ from LFI and WMAP separately. The
two were derived using their own fsky = 50% mask. The consistency between the two
experiments is further confirmed by the null test that we performed, estimating τ from
the half-difference map of the two data sets, LFI−WMAP. The posterior distribution for
this case is reported in the same figure and it is compatible with noise, giving an upper
limit of τ ≤ 0.059 at 95% CL.

0.02 0.04 0.06 0.08 0.10 0.120.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Re
la

tiv
e 

Pr
ob

ab
ilit

y

LFI
WMAP
WMAP+LFI
WMAP LFI

Figure 4.7: Posterior distributions of τ . LFI (blue) and WMAP (orange) are computed on their own 50% mask,
WMAP+LFI (green) in the union of the two, retaining 54% of the sky, while WMAP−LFI (red) is computed in
their intersection, retaining 46% of the sky.

Differently from the baseline low-` Planck 2018 likelihood, which is based on the TT ,
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EE, and BB power spectra, the pixel-based likelihood used in this thesis also includes
the information contained in the TE cross power spectrum. In order to investigate the
impact of this extra information, we build a polarization-only version of the pixel-based
likelihood, which contains only the Q and U maps and the QQ, QU, and UU blocks of
the covariance matrix, in an analogy of what was done in Planck Collaboration XI (2016).
When we use this latter likelihood, we employ low-` TT Commander likelihood based on
the Blackwell-Rao estimator. The value of τ measured nulling the TE cross correlation is

τ = 0.062± 0.012 (68%, Commander + lowP), (4.19)

which represents roughly a half-σ downward shift with respect to the full TEB likeli-
hood, already seen on the LFI only likelihood in Planck Collaboration XI (2016). Such
behavior is also shown by WMAP which, on 50% sky, yields τ = 0.055+0.019

−0.017 forcing TE = 0
and τ = 0.064+0.017

−0.015 with the full TEB likelihood. For WMAP, the same behavior is also
present on larger masks; for example on the 75% sky fraction we measure τ = 0.065+0.013

−0.014
when TE = 0 and τ = 0.070+0.012

−0.013 when also TE is varied.
In all the previous cases, when TE is forced to zero, the τ posterior shifts closer to

the HFI determination (Planck Collaboration V 2019; Pagano et al. 2019), which is based
only on EE estimates. Posteriors of the full pixel-based likelihood and the one without
TE for WMAP+LFI are shown in Fig. 4.8.

In order to verify if such behaviour is coherent with our error budget, we compare the
shift in τ with a set of simulations. In the left panel of Fig. 4.9 we show the histogram
of ∆τ , defined as the difference between the τ estimated form the full TEB likelihood
(“Full”) and the τ estimated forcing TE = 0 (“noTE”), for a Montecarlo of 1000 signal
and noise simulations. This analysis shows that nullifying TE still provides an unbiased
estimation of τ and also that the shift observed in data is not anomalous, representing
a 1.7 σ fluctuation. We also show in the right panel of Fig. 4.9 , a similar plot for the
ratio of 1-σ errors defined as στnoTE/στFull ; also, in this case, the value measured on data
is compatible with the simulations. This test also suggests that for this dataset, removing
TE degrades στ by about 5% on average.

Adding to the CMB temperature and polarization data the Planck lensing likelihood
(Planck Collaboration VIII 2018) and baryon acoustic oscillation (BAO) measurements
(Alam et al. 2017; Beutler et al. 2011; Ross et al. 2015) breaks the degeneracy more
efficiently with the amplitude of the scalar perturbations providing

τ = 0.0714+0.0087
−0.0096 (68%, TT,TE,EE+Lensing+BAO). (4.20)

Such bounds are slightly less constraining when compared with the existing Planck HFI
based likelihood (see, e.g., Planck Collaboration V 2019; Pagano et al. 2019, and our Fig.
4.10).

Assuming the TANH model for the ionzation fraction the τ constrain can be directly
converted into a mid-point reionization redshift of

zre = 9.28± 0.84 (68%, TT,TE,EE+Lensing+BAO). (4.21)

This value is higher but still compatible with analogous estimates that instead use the
Planck HFI based large-scale polarization likelihood, zre = 7.82± 0.71 (Planck Collabora-
tion VI 2018) and zre = 8.21± 0.58 (Pagano et al. 2019).

The WMAP+LFI CMB map and the corresponding covariance matrix are packaged in
low-` likelihood modules compatible with the clik infrastructure (Planck Collaboration
XV 2014; Planck Collaboration ES 2013, 2015, 2018) which are made publicly available6.

6The WMAP+LFI likelihood module is available on
https://web.fe.infn.it/∼pagano/low ell datasets/wmap lfi legacy
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Figure 4.8: Comparison of τ posterior distributions for the WMAP+LFI using the full TQU likelihood (blue) and
imposing TE = 0 in order to factorize the T and QU parts of the likelihood (orange).

We provide both a likelihood module that implements Eq. 4.4 inverting the full covariance
matrix and one that implements the Sherman-Morrison-Woodbury (SMW) formula (Golub
and Van Loan 1996) which allows us to speed up the computation by an order of magnitude
(see Planck Collaboration XI 2016, Appendix B.1 for details) but does not include TB an
EB. In both cases, in order to keep full compatibility with the codes of clik framework,
we do not treat the regularization noise as described in Sec. 4.3, but instead we sum a
single realization. Such noise realization has been chosen in order to have a deviation for
ln(1010As) and τ with respect to the baseline case smaller than 1% in units of σ.
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Figure 4.9: Left panel: Histogram of ∆τ ≡ τFull − τnoTE obtained analysing a Montecarlo of 1000 simulations. The
red vertical bar shows the same quantity evaluated on the data. Right panel: Histogram of στnoTE/στFull obtained
analysing a Montecarlo of 1000 simulations. The red vertical bar shows the same quantity evaluated on the data.
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Figure 4.10: Posterior distributions for τ for various datasets. Solid lines represent τ constraints ignoring TE, dashed
lines assume full TEB likelihood. Only τ and ln(1010As) are sampled, whereas the remaining ΛCDM parameters are
fixed to common fiducial values. The green and yellow lines show results obtained with the official Planck Legacy
low-` likelihoods (Planck Collaboration V 2019). The red line is obtained running the SRoll2 likelihood (Pagano
et al. 2019). The blue lines represent the results of Natale et al. (2020).



Chapter 5

Is the lack of power anomaly in the CMB cor-
related with the orientation of the Galactic
plane?

In Sec. 3.2.1, we have highlighted the importance of rejection or confirmation of the null-
hypothesis. This approach allows us to deeply investigate some properties of the chosen
model. It does not require the computational effort needed to evaluate the Bayesian evi-
dence, representing a flexible tool for data analysts. In the context of ΛCDM, cosmologists
are continuously searching estimators to test departures from such a model. This interest
brought to the finding several claims of unexpected statistical properties (or anomalies)
of the CMB fluctuations.

In this chapter we analyse the low-variance anomaly, that is a feature of the CMB
temperature anisotropy pattern present in both WMAP (Monteserin et al. 2008; Cruz
et al. 2011; Gruppuso et al. 2013) and Planck data (Planck Collaboration VII 2018).
It shows up at large angular scales, where the instrumental noise is negligible, with a
statistical significance around 2-3σ C.L. depending on the estimator employed. This effect
is correlated with other CMB anomalies, see e.g. Copi et al. (2007, 2009, 2010); Schwarz
et al. (2016), which are sensitive to the lack of power with respect to expectations of the
ΛCDM model, see Muir et al. (2018) for further details. For this reason, we will use the
expressions lack-of-power and low-variance as synonyms.

A statistical fluke is of course the simplest explanation for this phenomenon. However,
in this case, one has to accept to live in a rare ΛCDM realisation. In any case, there are
at least three reasons why this anomaly is worth of further investigations (Gruppuso and
Sagnotti 2015):

1. it is unlikely that the effect is due to an unaccounted instrumental systematics: both
WMAP and Planck observe it with similar significance despite being two separate
experiments with different data gathering schemes and scanning strategies;

2. it is not natural to attribute this effect to foreground residuals: the latter are not
expected to be correlated to the CMB, so a foreground residual should increase and
not lower the total anisotropy power1. A similar argument would also apply to
possible extensions of the ΛCDM as long as their source is statistically independent
from the primary CMB anisotropy (Gruppuso 2007; Bunn and Bourdon 2008).

3. it is suspiciously dependent on the Galactic mask: its statistical significance increases
when only high Galactic regions are considered, which is usually a conservative choice

1Note also that typically (and in particular at large scales where this chapter is focused) the foreground
mitigation is performed at the map level (in the harmonic or pixel space) and not at the C` level.
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in CMB data analysis (Gruppuso et al. 2016). It was also shown Gruppuso et al.
(2018) that this effect was dominated by odd over even multipoles, see e.g. Kim and
Naselsky (2010a,b); Gruppuso et al. (2011).

In this chapter we want to focus on the last item by estimating, from a statistical
point of view, how likely is to find a CMB map of the ΛCDM model with such a behaviour
between low- and high-Galactic latitudes. To perform this analysis we will use random
rotations (see Appendix A.1) of simulated CMB maps in order to evaluate among all the
possible orientations what is the probability of having most of the power at low-Galactic
latitudes. The adopted estimator is the variance, V , of the temperature anisotropies,
δT (n̂),

V ≡ 〈(δT (n̂))2〉 , (5.1)

where n̂ is the unit-vector pointing a given direction of observation. V is built through
the angular power spectrum (APS), C`:

V =
`max∑
`=2

2`+ 1
4π C` , (5.2)

where the maximum multipole, `max, is set to 29 in the following since we want to be
consistent with the maximum multipole considered in the Planck pixel-based low-` Likeli-
hood functions (Planck Collaboration XI 2016). However, the dependence of V upon `max
is very weak for `max & 10 and therefore such a choice does not impact significantly on
our results.

5.1 Data set and simulations

5.1.1 CMB maps and masks

We use data products from the Planck 2018 data release, available in the Planck Legacy
Archive2. In particular we employ the temperature Commander 2018 map (Planck Collabo-
ration IV 2018) downgraded to HEALPix3 (Gorski et al. 2005) resolution Nside = 16 with a
Gaussian beam with full width half maximum, FWHM, of 440 arcmin. The map is shown
in the left panel of Fig. 5.1. As a consistency check we also employ the SMICA temperature
map (Planck Collaboration IV 2018), also downgraded from high resolution to Nside = 16.
These CMB maps have been delivered already with a constrained CMB realisation along
the Galactic plane. We have added to those maps a regularisation noise realisation with
2 µK rms, consistently considered in the extraction of the APS. This choice is consistent
with the procedure adopted in Planck Collaboration V (2019). We checked that such a
noise has a negligible impact on our results. The maps have been masked with several
Galactic masks, shown in the right panel of Fig. 5.1 and whose sky fractions are listed
in Table 5.1. More specifically, the considered masks are the Nside = 16 confidence mask
provided with the 2018 Commander solution (Planck Collaboration IV 2018), named Std
2018, and other four masks built extending the edges of the Likelihood 2015 standard
mask (Planck Collaboration XI 2016) by 12, 18, 24 and 30 degrees, called respectively
Ext12, Ext18, Ext24 and Ext30. This choice is done in order to make contact with previous
works, i.e. Gruppuso et al. (2016, 2018), and to compare the impact of the most recent
Planck 2018 data with respect to that of the 2015 release, see Appendix A.2.

2https://www.cosmos.esa.int/web/planck/pla
3http://healpix.sourceforge.net
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Figure 5.1: Left panel: Commander 2018 map smoothed at 440 arcmin, where the Std 2018 mask is applied. Right
panel: Galactic temperature masks considered in this chapter. The dark blue region is for the 2018 standard case.
The blue region is for the Ext12 case. The light blue region is for the Ext18 case. The dark green region is for the
Ext24 case. The green region is for the Ext30 case.

Mask Sky Fraction [%]
Std 2018 85.6
Ext12 70.8
Ext18 59.1
Ext24 48.7
Ext30 39.4

Table 5.1: Observed sky fractions for the masks shown in Figure 5.1.

5.1.2 Sets of simulations

We generate 105 CMB temperature maps at HEALPix resolution Nside = 16 randomly
extracted from the Planck 2018 best-fit model through the synfast function of healpy
(Gorski et al. 2005) with a Gaussian beam of 440 arcmin FWHM. To provide numerical
regularisation, a different random noise realisation, with rms of 2 µK, is added to each of
the CMB simulations, as done for the observed Commander and SMICA 2018 maps. This set
is used to estimate the statistical significance of the low-variance in a ΛCDM framework.
A subset of 103 simulations of this set of ΛCDM realisations is referred to as ensemble
0. Another subset of 103 simulations constrained to have variance V close to the value
observed by Commander 2018, Vc = 2090.02 µK2 obtained with the Std 2018 mask, is
called ensemble 1. More precisely a map mi with variance Vi belongs to ensemble 1, if
Vc − 20 µK2 ≤ Vi ≤ Vc + 20 µK2. The analysis of the stability of our results with respect
to the choice of the threshold of 20 µK2 is given in Appendix A.3. Note that in the case of
SMICA the variance is also constrained in the same range which contains the value observed
in the data (Vs = 2085.57µK2).

5.1.3 Angular power spectrum estimator

We use the variance V as estimator for the lack of power, built through Eq. (5.2). The
C` are obtained with an optimal angular power spectrum estimator, namely BolPol
(Gruppuso et al. 2009), an implementation of the Quadratic Maximum Likelihood (QML)
method (Tegmark 1997; Tegmark and de Oliveira-Costa 2001). The choice of the QML
algorithm minimises the introduction of extra statistical uncertainty in our analysis with
respect to other, suboptimal, APS estimators (Molinari et al. 2014). For each of the
simulated maps and for the various masks defined above, we have used the estimates of
BolPol to build the variance, V . In Fig. 5.2 we show the APS of the Commander 2018
temperature map estimated with the five masks shown in Fig. 5.1 and whose sky fraction
is reported in Table 5.1.
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Figure 5.2: APS of the Commander 2018 temperature map estimated with the five masks shown in Fig. 5.1 and
whose sky fraction is reported in Table 5.1. The uncertainty shown for each multipole do not include cosmic variance.
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Figure 5.3: Each panel shows the empirical distribution of V in µK2 expected in a ΛCDM model (blue) and computed
throught Eq. (5.2) for the masks listed in Table 5.1. We report also the even and odd splits of the variance, through
Eq. 5.3 (orange and green, respectively). Vertical dashed and dotted bars correspond to the Planck 2018 Commander
and SMICA CMB solutions, respectively.

5.2 Analysis in ΛCDM framework

As already known in the literature, the observed value of V is low and its statistical
significance increases considering regions at high Galactic latitude, see e.g. Monteserin
et al. (2008); Cruz et al. (2011); Gruppuso et al. (2013); Planck Collaboration XXIII
(2014); Planck Collaboration XVI (2016); Planck Collaboration VII (2018). Employing
the Bolpol code to extract the TT APS for each of the 105 ΛCDM simulations, we
have built the probability distribution functions of V for each of the five masks shown in
Fig. 5.1. The MC distributions are displayed in Fig. 5.3 where they are compared to the
corresponding Planck 2018 observed values shown as vertical bars.

In the same panels we provide also V+ (V−), shown in orange (green), defined as V
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Figure 5.4: Lower tail probability of the Planck 2018 Commander and SMICA maps with respect to the 105 ΛCDM
simulations as a function of the sky fraction.

but where the sum in Eq. (5.2) is performed only over the even (odd) multipoles, i.e.

V± =
`max∑
`=2

[
1± (−1)`

2

]
2`+ 1

4π C` . (5.3)

In addition, we display as vertical bars, with the same color convention, the corresponding
observed Planck 2018 values for V±.

Fig. 5.4 shows the three lower tail probabilities, henceforth LTP, for V+ (orange), V−
(green) and V (blue) against the observed sky fraction of the five cases of Fig. 5.3. V
shows a monotonic behaviour: as one considers regions at higher and higher Galactic
latitude the Planck observed values shift towards lower variances more rapidly than the
increase of the width of the distribution due to sampling variance because of the smaller
observed sky fraction considered. In other words, the observed values are more and more
unlikely and for the extreme case, i.e. Ext30 mask, we find a compatibility with ΛCDM
model only at 0.3% C.L. for the Commander map and 0.5% for SMICA. This is dominated
by V+ which is constantly low, independently on the considered sky fraction. Indeed, for
Commander, its LTP varies around 0.3 − 0.5%, for all the considered sky fractions lower
than the Std 2018 one. For SMICA, instead, its LTP varies in a slightly higher but still low
range [0.5% , 1.1%]. On the other hand, V− is more sensitive to the sky fraction, decreasing
monotonically as one takes into account regions at higher and higher Galactic latitude.
However, its LTP remains inside the 1 σ dispersion of the MC’s, reaching ∼ 11% in the
Ext30 mask, independently from the employed CMB solution.

The fact that the LTP of V decreases when using more aggressive masks suggests
that the low power of the Planck data is somehow anisotropically distributed on the map.
In other words, the increasing discrepancy of the data with respect to ΛCDM when we
exclude from the analysis pixels around the Galactic plane, indicates a sort of “localisation”
of most of the power around the Galactic plane itself.

Moreover, Fig. 5.3 and 5.4 show that, at large angular scales, such a low-Galactic-
latitude power turns out to be dominated by the odd multipoles, see also Gruppuso et al.
(2018).



CHAPTER 5. LACK OF POWER AND GALACTIC PLANE ORIENTATION 80

5 10 15 20 25 30500

0

500

1000

1500

2000

2500
(

+
1)

C
/2

 [
K

2 ]
Std 2018

Planck best fit 2018
Commander 2018
Commander Rot

5 10 15 20 25 30500

0

500

1000

1500

2000

2500

(
+

1)
C

/2
 [

K
2 ]

Ext12
Planck best fit 2018
Commander 2018
Commander Rot

5 10 15 20 25 30500

0

500

1000

1500

2000

2500

(
+

1)
C

/2
 [

K
2 ]

Ext18
Planck best fit 2018
Commander 2018
Commander Rot

5 10 15 20 25 30500

0

500

1000

1500

2000

2500

(
+

1)
C

/2
 [

K
2 ]

Ext24
Planck best fit 2018
Commander 2018
Commander Rot

5 10 15 20 25 30500

0

500

1000

1500

2000

2500

(
+

1)
C

/2
 [

K
2 ]

Ext30
Planck best fit 2018
Commander 2018
Commander Rot

Figure 5.5: Each panel shows the TT APS of the Commander 2018 map estimated using different masks (red symbols).
Blue line and blue region are respectively the average and the standard deviation of 103 random rotations of the
Commander 2018 map. Note that in each mask the MC average is equal to the estimates obtained in the Std 2018
mask demonstrating that the variance is a mathematical object invariant under rotations only on average: the
presence of a mask breaks the rotational symmetry for the single realization.

5.2.1 Variance analyses including rotations

We now further investigate the dependency of V with respect to the Galactic mask by
implementing random rotations of the maps (see Appendix A.1 for details which include
the validation). This is performed in order to evaluate among all the possible orientations
what is the probability of having most of the power at low Galactic latitude. The above
procedure can be seen as a sort of look-elsewhere effect on the orientation of the mask.
For computational reasons we reduce the number of MC simulations by considering the
ensemble 0 made of 103 maps generated from the Planck 2018 best-fit model. Note that
V is invariant under rotation of the input maps by construction only in the full sky case.
In fact, when a mask is applied, the variance V is not conserved under rotation for a
single realisation but invariance is restored only on ensemble average. This effect is nicely
captured already at the angular power spectrum level: in Fig. 5.5 each panel shows the
average and the statistical uncertainty at 1σ of the TT spectra of 103 random rotations
of the Commander map for the various masks4. Notice that the APS estimates obtained
with the Std 2018 mask are recovered only on average (blue lines) in the other masks.
Moreover, as expected, the standard deviation (blue region) increases as the mask gets
larger, allowing less observed sky for the analysis. In addition, still in Fig. 5.5 we show
the TT spectrum of the Commander 2018 map without any rotation (red symbols).

We analyse random rotations of the ensemble 0 and corresponding observed data build-
ing two estimators, the LTP-estimator (Section 5.2.1) and the r-estimator (Section 5.2.1).
With the former we investigate separately for each mask how anomalous is the particular
orientation of the Galactic plane. With the latter we quantify the statistical significance
of the lowering trend of V with respect to its value in the Std 2018 mask with all the
possible orientations.
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Figure 5.6: Histograms of the LTP of finding a rotated map of the ensemble 0 with V rot < V , where V is the
variance of the corresponding unrotated map. Each panel shows the results obtained using a different mask. Red
dashed and green dotted vertical bars are the LTP for Commander and SMICA respectively.

LTP estimator

For each map mi belonging to ensemble 0 we build the histogram of Vi obtained through
103 random rotations of that map. Hence, we compute the LTP of that map mi, denoted
with LTPi, with respect to the corresponding set of rotations. This can be repeated for
i = 1, ..., 103, i.e. for all the maps of the ensemble 0 and for all the considered masks.
Thus, for each mask, we obtain a MC of 103 values of LTP representing the distribution
of probabilities expected in a ΛCDM model. Since the variance does not depend on
the orientation, the distribution of LTP is expected to be uniform, that is, each LTP is
equiprobable. The empirical distribution of the LTP-estimator for each considered mask
shown in Fig. 5.6 confirms our expectations. In the same Figure we also show the LTP
obtained from Planck data as vertical bars, red for Commander and green for SMICA. The
corresponding values are reported in left panel of Table 5.2. When we consider higher
Galactic latitude, we find that the probability of observing a LTP with respect to its
rotations lower than the corresponding LTP of Commander (SMICA) 2018 is anomalous at
∼ 2.8σ (∼ 2.5σ). Indeed, in the Ext30 case, only 5 (13) out of 103 maps of the ensemble
0 have a lower LTP than the Commander (SMICA) 2018 map, i.e. only in the 0.5% (1.3%)
of the cases the anomaly associated to the power localisation around the Galactic plane is
higher than data (see right panel of Tables 5.2).

r-estimator

We use here the r-estimator defined as

r ≡ Vstd − Vmask
max

j∈rotations

{
V

(j)
std − V

(j)
mask

} , (5.4)

where Vstd is the variance computed in the Std 2018 mask, while Vmask is the variance
computed in one of the other four extended masks. The numerator of Eq. (5.4) fixes
the sign of the r-estimator as determined by the decrease (r > 0), or increase (r < 0),

4We obtain a similar behaviour for SMICA that is not shown here for sake of brevity.
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LTP [%]
Mask V

(rot)
c < Vc V

(rot)
s < Vs

Std 2018 22.7 56.8
Ext12 5.7 3.5
Ext18 4.8 4.1
Ext24 1.0 1.7
Ext30 0.7 1.4

LTP [%]
Mask LTPi < LTPc LTPi < LTPs
Std 2018 18.8 49.1
Ext12 6.7 4.5
Ext18 4.7 4.4
Ext24 1.0 1.5
Ext30 0.5 1.3

Table 5.2: Left table: The probability of obtaining a value of the variance of the rotated Commander map (second
row), V (rot)

c , and rotated SMICA map (third row), V (rot)
s , smaller than the unrotated one, Vc and Vs respectively.

Right table: LTP of obtaining a simulation of the ensemble 0 with LTP lower than the one obtained with the
Commander map, LTPc, or SMICA map, LTPs.
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Figure 5.7: Left panel: r-estimator computed with Eq. (5.4) versus the sky fraction. The coloured dotted lines
stand for the r value obtained from the ensemble 0. Blue and green solid lines stand for Commander and SMICA
respectively. Right panel: UTP of obtaining a simulation with r larger than the one obtained with Commander (blue
line) or SMICA (green line) as a function of the sky fraction.

of the variance as we widen the Galactic mask. This behaviour is normalised by the
denominator, which picks up the maximum decrease among all the rotations5. The r-
estimator is therefore upper bounded by 1, but it can become lower than -1. In other
words, the r-estimator represents the fractional change of V , computed in an extended
mask with respect to the Std 2018 mask value, relative to the maximum decrease across
rotations. For example, r = 0.5 means that, we are dealing with a map which, in a given
mask, has a variance difference with respect to the standard mask equal to exactly half
of the maximum difference which can be found among all rotations. In the left panel of
Fig. 5.7 we show the r-estimator for all the considered cases. Dotted lines connect the
MC values of r represented with a plus symbol. Solid blue line connects the Commander
2018 values (dot symbols) and the solid green line connects the SMICA 2018 values (square
symbols). For this estimator we consider the upper tail probability, UTP, defined as the
fraction of simulations with larger values of r than the observed one. They are shown
in the right panel of Fig. 5.7 and quoted in Table 5.3. Notice that both Commander and
SMICA present an increase of r for higher and higher Galactic latitudes and in the Ext30
case, they are close to 1, being rc = 0.88 for Commander and rs = 0.90 for SMICA. This
means that the observed maps in the Ext30 case are almost aligned to the direction which
maximizes the lowering of V obtainable through rotations. The probability corresponding
to this event is 0.2% for both Commander and SMICA. This leads to an anomalous value of
r at a level of 3.1σ.

5In the denominator of r we include also the unrotated case, denoted here as the 0th rotation.
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UTP [%]
Mask rc < r rs < r

Ext12 10.9 7.5
Ext18 3.9 2.0
Ext24 0.9 1.5
Ext30 0.2 0.2

Table 5.3: UTP of obtaining a simulation of the ensemble 0 with r larger than the one obtained from the data.
Second column shows the UTP for Commander, third column the UTP for SMICA.
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Figure 5.8: Each panel shows the Planck 2018 best-fit model (black solid line) and the average APS of ensemble 1
(blue line), with its 1σ dispersion (blue region) for all the considered masks.

5.3 Analysis of ΛCDM simulations with low variance

In this section we repeat the analysis performed in Section 5.2 but now considering sim-
ulated maps which have almost the same variance V as the one observed by the CMB
solutions (Commander and SMICA) of the Planck 2018 release. These are collected in the
ensemble 1, as described in Section 5.1. The aim of this analysis is to check whether
the previous results still hold when the variance is constrained to be low also across the
simulations. In other words we would like to exclude the possibility that the observed
trend of a lowering variance when extending the Galactic mask, is connected to the low
value of the variance measured in the Standard mask. In Fig. 5.8 we display the Planck
2018 best-fit model (black solid line) and the average of ensemble 1 (blue line), with its
standard deviation (blue region) for all the considered masks. Notice the increase of the
statistical uncertainty as the observed sky fraction decreases. This figure shows that en-
semble 1 behaves differently from the fiducial power spectrum only at low-`. In other
words, selecting a subset of ΛCDM realisations with low variance is in fact equivalent to
choosing maps with suppressed C` at low multipoles6.

We evaluate the variance V for each element of ensemble 1 and for each of the consid-
ered masks. Results are shown in Fig. 5.9 where each panel provides the histogram of V
for each mask. Dashed red line represents V as measured from Commander, and the dashed

6Note that we recover empirically the well-known correlation between low-V and low-C2 anomalies
Muir et al. (2018).
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Figure 5.9: Histograms of the variances V of the maps belonging to the ensemble 1 computed with the masks Std
2018, Ext12, Ext18, Ext24 and Ext30. The red dashed line identifies the variance of the Commander map, Vc. The
green dashed line identifies the variance of the SMICA map, Vs.

LTP [%]
Mask V < Vc V < Vs
Std 2018 50.7 41.5
Ext12 4.1 1.9
Ext18 2.3 1.1
Ext24 0.2 0.2
Ext30 0.3 0.4

Table 5.4: The probability of obtaining a value for the variance V smaller than that of Commander (second column),
Vc, or SMICA (third column), Vs, for a map of the ensemble 1. Note that the difference between the Ext24 and Ext30
case is of the order of the numerical sensitivity of the ensemble 1, since it is made of 103 simulations.

green line stands for V of SMICA. In the left panel of Fig. 5.10 we display the LTP of the
Planck 2018 data in percentage as a function of the sky fraction. They are also reported
in Table 5.4 for convenience. We find that the monotonic behaviour shown in Fig. 5.4 for
the 105 ΛCDM simulations is almost7 recovered for the ensemble 1: V still decreases at
high Galactic latitudes with a percentage of compatibility at the level of 0.3− 0.4% in the
Ext30 case. This means that a “low variance” model (low as the one observed by Planck)
is not enough to explain this behaviour at high Galactic latitude. Notice also that this
effect is largely dominated by the quadrupole and the octupole. This is shown in the right
panel of Fig. 5.10, where the LTP vs the observed sky fraction is shown when we exclude
only the quadrupole (blue dashed lines) or both the quadrupole and the octupole (red
dashed lines) in the computation of V .

5.3.1 Variance analyses including rotations

As for the ensemble 0 we now include random rotations in the analysis of the ensemble 1.
We still use the LTP-estimator and the r-estimator defined above.

7Note that for the Commander case the difference between the two last cases, i.e. Ext24 and Ext30 case,
is of the order of the numerical sensitivity of the ensemble 1, since it composed of 103 simulations.
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Figure 5.10: Right panel: LTP of the variance estimator for the Planck 2018 data in percentage as a function of the
sky fraction. Left panel: the same as in right panel but with `min = 3 (blue line) or `min = 4 (red line).
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Figure 5.11: Histograms of the LTP of finding a rotated map of the ensemble 1 with V rot < V , where V is the
variance of the corresponding unrotated map. Each panel shows the results obtained using a different mask. Red
dashed and green dotted vertical bars are the LTP for Commander and SMICA respectively.

LTP estimator

For each map mi belonging to ensemble 1 and its rotations we obtain the MC of 103 values
of LTPi. In Fig. 5.11 we show the histograms of such LTPi for each considered mask. The
observed LTP (i.e. those obtained from Planck data and shown in left panel of Table 5.2)
are also shown in the same figure as vertical bars, red for Commander and green for SMICA.
Notice that, by construction, even in a ΛCDM model constrained to have a low-variance
as ensemble 1, the variance does not depend on the orientation. Therefore the distribution
of LTP is still uniform as it is found in the histograms of Fig. 5.11. In this case we find
for ensemble 1 a very similar behaviour to ensemble 0. For Commander (SMICA) the LTP
estimator gives a ∼ 2.8σ (∼ 2.6σ) anomaly at high Galactic latitude, see Table 5.5.

r-estimator

We apply here the r-estimator to the ensemble 1 simulations. In Fig. 5.12 we show the
results for all the considered cases. Dotted lines connect the MC values of r represented
with a plus symbol. Solid blue line connects the Commander values (dot symbols) and the
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LTP [%]
Mask LTPi < LTPc LTPi < LTPs
Std 2018 21.6 52.9
Ext12 5.7 3.2
Ext18 4.5 3.9
Ext24 0.7 1.3
Ext30 0.5 0.9

Table 5.5: LTP of obtaining a simulation of the ensemble 1 with LTP lower than the one obtained with the Commander
map, LTPc, and SMICA map, LTPs.
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Figure 5.12: Left panel: r-estimator computed with Eq. (5.4) versus the sky fraction. The coloured dotted lines
stand for the r value obtained from the ensemble 1. Blue and green solid lines stand for Commander and SMICA
respectively. Right panel: UTP of obtaining a simulation with r larger than the one obtained with Commander (blue
line) or SMICA (green line) as a function of the sky fraction.

solid green line connects the SMICA values (square symbols). The UTP are shown in the
right panel of Fig. 5.12 and quoted in Table 5.6. At high Galactic latitude we find an
anomalous value for r at the level of ∼ 2.9σ with a UTP of 0.4% for Commander and 0.3%
for SMICA. In conclusions the results for the ensemble 1 are similar to those of ensemble 0
even when rotations are considered.

UTP [%]
Mask rc < r rs < r

Ext12 4.0 5.3
Ext18 4.0 1.5
Ext24 0.5 0.7
Ext30 0.4 0.3

Table 5.6: UTP of obtaining a simulation with r larger than the one obtained from the data. Second column shows
the UTP for Commander, third column the UTP for SMICA.

A Appendix

A.1 Generating the rotations

Random rotations of temperature CMB maps are generated following an harmonic-based
approach through a Python algorithm. We consider maps at HEALPix resolution Nside = 16
which are harmonic-expanded to obtain the initial ain`m coefficients. These coefficients are
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then rotated through the Wigner rotation matrices, R(ϑ, ϕ, ψ), whose rotations angles
(ϑ, ϕ, ψ) (also known as Euler angles), are randomly extracted from uniform distributions.
Technically this is performed thanks to the healpy subroutine rotate alm. After the
rotation, the final map, or simply the rotated map, mR can be written as

mR =
∑
`m

(∑
m′

Rmm′(ϑ, ϕ, ψ)ain`m′
)
Y`,m(θ, φ) . (5)

To validate the procedure which implements random rotations, we consider a map which is
zero except for a spot of 9◦, see Fig. 13. This is done simply setting to 1, nine neighboring
pixels and then smoothing8 the map with a Gaussian beam with a FWHM= 9◦. For
convenience we call m0 this initial map. Starting from m0 we perform Nrot rotations9

considering mi−1 as the input for ith rotation, with i = 1, ...Nrot. We then compute the

Figure 13: A test map at HEALPix resolution Nside = 16 with all pixels zero except for 9 pixels set to 1 and after
convolution with a Gaussian beam of 9◦.

following total map,

mtot =
Nrot∑
i=0

mi , (6)

which is shown in Fig. 14, for Nrot = 2, 50 and 500. The idea is to use mtot to test whether
the set of considered rotations is able to “cover uniformly” all the possible directions. This
is our requirement for validation which is quantified computing the APS of mtot and com-
paring the monopole with higher order multipoles: when the former dominates over the
latter we can safely state that the set of rotations is sufficiently populated to have its
isotropic part leading over accidental anisotropies. Note that, in turn, this procedure
provides the minimum number of rotations which are needed to fullfill the requirement
mentioned above. The left panel of Fig. 15 shows the behaviour of the lowest multipoles,
namely the monopole C0, the dipole C1, the quadrupole C2, and the octupole C3, against
the number of rotations. The monopole component increases its magnitude quadratically
versus the number of rotations whereas low-` components oscillate around a very slowly
monotonic growth. We repeat this procedure 50 times and compute the mean distribution
of the same first low-` components, see right panel of Fig.15. The mean behaviour of the
different components, and the hierarchy among the multipoles, is substantially unchanged
with respect to what obtained with the single realisation. In particular the hierarchy
among low-` multipole components seems to become stable for Nrot > 900. Most impor-
tantly, we find that the magnitude of the ratio C0/C1 at Nrot = 1000 is of the order 103:
therefore we choose this threshold to define the minimal number of rotations needed to
cover sufficiently homogeneously the whole sky.

8The smoothing is applied in order to minimise aliasing effects when going from real to harmonic space
and vice versa.

9In other words, we apply Nrot times Eq. (5).
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Figure 14: Total map mtot computed through Eq. 6 at HEALPix resolution Nside = 16 for Nrot = 2 (top left panel),
Nrot = 50 (top right panel) and for Nrot = 500 (bottom panel).
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Figure 15: Left panel: amplitude of the first low-` components of the APS of the test map after each rotation. Right
panel: the average over 50 repetitions of the machinery described in Sec. A.1. The filled regions correspond to the
1 σ dispersion of C` components.

A.2 Comparison between 2018 and 2015 Planck release

In this section we consider the 2015 Planck data. This analysis is performed mainly
because the Planck 2015 standard mask (Planck Collaboration XI 2016), henceforth called
Std 2015, is smaller than the 2018 one. Its observed sky fraction is 93.6%, see Fig. 16,
versus 85.6% of the Std 2018, see Fig. 5.1 and Table 5.1. Hence we employ here the
Commander 2015 map used in Planck Collaboration XI (2016) still at HEALPix resolution
Nside = 16 and FWHM of 440 arcmin and consistently to what performed for the 2018
case, we added to this map a regularisation noise of 2 µK rms. The masks used during
this analysis are the same listed in Table 5.1, with the exception of the Std 2018, which
has been replaced with the Std 2015. Similarly to what performed in Section 5.1 for the
generation of the ensemble 0, we build here a MC of 104 maps using the Planck 2015
best-fit model. From these maps, we select a subset of 103 maps with variance V within
20 µK2 from the value computed with the Commander 2015 map, i.e. Vc = 2060.09 µK2.
This set of simulations is called ensemble 1-2015. The behaviour of V as a function of the
masks obtained with the ensemble 1-2015 is shown in Fig. 17 and the corresponding LTP
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Figure 16: Std 2015 temperature mask.
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Figure 17: Histograms of the variance V of the maps belonging to ensemble 1 - 2015 computed for the masks Std
2015, Ext12, Ext18, Ext24 and Ext30. The red dashed line identifies the variance of the Commander 2015 map, Vc.

are reported in the first column of Table 7. We recover a similar monotonic behaviour as
for the 2018 case. That is, in the Ext30 case, the behaviour of the 2015 data is anomalous
at ∼ 2.9σ.

We take into account now the rotations applied to ensemble 1-2015. The results for the
LTP-estimator and r-estimator are shown in Fig. 18 and Fig. 19. For the LTP-estimator
we find in the Ext30 mask a LTP of 0.5% which is in line with the 2018 analysis. All
the LTP for this estimator are reported in Table 7. On the other hand, the r-estimator
gives rc = 0.80 for the Ext30 mask with a p-value of 1.2%. While the general behaviour
of r across the mask is recovered here, the probability at high Galactic latitude is slightly
higher.

A.3 Dependence on threshold

In this section we study the impact on our results of the threshold of V we choose to select
the maps of the ensemble 1 from the 105 ΛCDM simulations. Specifically, in addition to
the threshold of 20 µK2 used in Section 5.1, we choose two other thresholds at 10 µK2
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LTP [%]
Mask V < Vc V

(rot)
c < Vc LTPi < LTPc

Std 2015 47.2 64.2 58.3
Ext12 7.2 11.1 10.0
Ext18 0.8 2.9 2.4
Ext24 0.4 1.6 1.6
Ext30 0.3 0.5 0.5

Table 7: The probability of obtaining a value for the variance V smaller than that of Commander 2015 for a map of
the ensemble 1-2015 (first column). The probability of obtaining a value of the variance of the rotated Commander
2015 map, V (rotated)

c , smaller than the unrotated one (second column). LTP of obtaining a simulation with LTPi
lower than the one obtained with the Commander 2015 map, LTPc (third column).

UTP [%]
Mask rc < r

Ext12 12.1
Ext18 2.3
Ext24 1.4
Ext30 1.2

Table 8: UTP of obtaining a simulation of the ensemble 1 - 2015 with r larger than the one obtained with the
Commander 2015 map.

and 30 µK2. These will define two new subsets of 103 CMB temperature maps which
have a variance V close to the value observed by Commander 2018. We refer to these two
additional subsets as ensemble 2 (E2) and ensemble 3 (E3), respectively.

Therefore, we repeat on E2 and E3, the same analysis previously performed on ensem-
ble 1 for both the considered estimators, focusing on the mask Ext30. We start building
the distribution of V , see Fig. 20, where the left panel refers to E2 while the right one to
E3. The LTP of Commander 2018 are LTPE2(Vc < Vi)=0.2% and LTPE3(Vc < Vi)=0.7%,
which are consistent with what obtained with ensemble 1.

As done for the ensemble 1, we can apply random rotations to E2 and E3 and build
the LTP-estimator and the r-estimator in the Ext30 case. The distributions of the former
are shown in the left panels of Fig. 21 and Fig. 22 for the E2 and E3 case respectively.
The vertical dashed bars stand for the Commander 2018 values of the estimator, see again
Table 5.5. The LTP of the LTP-estimator, turn out to be 0.3% and 0.2% for E2 and E3
respectively. In the right panels of Fig. 21 and Fig. 22 we show the r-estimator for the
E2 and E3. We find UTPE2(rc < ri)=0.4% and UTPE3(rc < ri)=0.5% for E2 and E3
respectively. We conclude that our results are stable with respect to the choice of the
threshold which defines the set of constrained realisations.



CHAPTER 5. LACK OF POWER AND GALACTIC PLANE ORIENTATION 91

0 20 40 60 80 100
Percentage

0

20

40

60

80

100
Co

un
ts

Std 2015
Ensemble  1 - 2015
Commander 2015

0 20 40 60 80 100
Percentage

0

20

40

60

80

100

Co
un

ts

Ext12
Ensemble  1 - 2015
Commander 2015

0 20 40 60 80 100
Percentage

0

20

40

60

80

100

Co
un

ts

Ext18
Ensemble  1 - 2015
Commander 2015

0 20 40 60 80 100
Percentage

0

20

40

60

80

100

Co
un

ts

Ext24
Ensemble  1 - 2015
Commander 2015

0 20 40 60 80 100
Percentage

0

20

40

60

80

100

Co
un

ts

Ext30
Ensemble  1 - 2015
Commander 2015

Figure 18: LTP of finding a rotated map of the ensemble 1 - 2015 with V rot < V , where V is the variance of the
corresponding unrotated map. Each panel shows the results obtained using a different mask. The dashed vertical
bars are the LTP of Commander 2015.
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Figure 19: Left panel: r-estimator computed with Eq. (5.4) versus sky fraction. Right panel: UTP of obtaining a
simulation with r larger than the one obtained with Commander 2015 as a function of the sky fraction.
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Figure 20: Variance distribution of the ensemble 2 (left panel) and ensemble 3 (right panel) for the Ext30 mask.
Red dashed line corresponds to the variance of the Commander 2018 map.
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Figure 21: Left panel: distribution of probability of observing, in a ΛCDM model with low variance, a lower value
with respect to Vc due to random rotations of ensemble 2. Right panel: r-estimator computed with Eq. (5.4) for
the ensemble 2. Both the results have been obtained using the Ext30 mask.
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Figure 22: The same as Fig.21 but for ensemble 3.



Chapter 6

A small-scale estimate of the reionization op-
tical depth and its interplay with ΛCDM ex-
tensions

As pointed out in Planck Collaboration VI (2018), there is no strong evidence in favour of
any of the extensions to the ΛCDM model. Furthermore, it has also shown the robustness
of the constraints on the base-ΛCDM parameters to these extensions. The results are
stable both when are used Planck data alone and when are added data from external
sources. However, Planck measurements are far from the cosmic variance limit, which is
crucial to discriminate between different cosmological models. It demands the need for
new experiments specifically designed to overcome what has done so far.

Despite the community interest in the improvement of polarization and lensing mea-
surements, there are no studies in the literature devoted to evaluating the information
content carried individually by these two probes. Nonetheless, the gain achievable on
a single parameter by improving their measurements is not explicitly quantified. Both
probes are crucial for reducing the volume of parameter space, not only for the ΛCDM
model but also for its extensions. On one hand, lensing can help to improve the neu-
trino masses or the effective number of relativistic species constraints. Thus, relatively
interesting extensions, in this optic, can be both ΛCDM+mν and ΛCDM+Neff models.
On the other hand, future large-scale polarization measurements are promising stringent
constraints on the reionization optical depth. Such an achievement can easily break the
∆-τ degeneracy. Here ∆ represents a characteristic scale which modify the power spec-
tra damping both temperature and polarization power at low multipoles (Gruppuso and
Sagnotti 2015). It constitutes one possible solution to the lack of power anomaly at large
angular scales in the anisotropy power spectrum since it breaks the power-law at very low
wavenumbers. In this ΛCDM+∆ model the scalar power spectrum takes the form of

P∆(k) = As
(k/k∗)3[

(k/k∗)2 + (∆/k∗)2
]2−ns2 . (6.1)

In this chapter, we are going to apply some method seen in Sec. 3.4. The aim is to
quantify the effects of lensing and large-scale polarization measurements induced on ΛCDM
parameters. As extended models, we consider the possibility of varying the neutrino
mass, the effective number of relativistic species, ad ∆. All these three parameters have a
characteristic effect on both CMB power spectra and lensing potential. Thus, separating
the two probes, we study how a different experimental setup will affect their determination.
The idea beyond that is the possibility of breaking the Ase−2τ degeneracy in two ways. The
first involves large-scale polarization measurement to constraint the value of τ since the EE

93
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spectrum is the most sensitive to a change of this parameter. The second employs large-
scale temperature and lensing likelihood. This choice allows us to break the degeneracy
by determining the value of As.

6.1 Dataset and forecasts

We employ three different large-scale polarization datasets. Precisely, we use the low-
frequency dataset described in Chapter 4, hereafter WMAP+LFI; the spectrum based
dataset described in Pagano et al. (2019), hereafter Sroll2; the spectrum based dataset
described in Planck Collaboration V (2019), hereafter SimAll. All these three datasets
employ the Commander 2018 map (Planck Collaboration V 2019) in temperature. We
further combine these with the plik TTTEEE Planck high-` (Planck Collaboration V 2019)
and the Planck lensing likelihoods (Planck Collaboration VIII 2018). We will improperly
refer to these joint likelihoods with the name of the corresponding low-` datasets.

Furthermore, we consider forecasts for future CMB experiments by performing a
Bayesian likelihood analysis using a Monte Carlo Markov Chains (MCMC) method, follow-
ing the approach described in Perotto et al. (2006). In particular, having set the ΛCDM
parameters to the bestfit values given in Pagano et al. (2019), we produce three mock
datasets. We refer to the first as stdSO. It includes the publicly available “goal” noise
curves for the 93 GHz channel at small scales, 30 ≤ ` ≤ 4000, over 40% of the sky. These
are released by the SO collaboration and fully described in Sec. 2.2 of Ade et al. (2019).
For the largest angular scales not probed by SO, we include TT and EE from Planck over
80% of the sky in the range 2 ≤ ` ≤ 29. It is worth noting that, this choice is different from
the one adopted by the SO collaboration which use only the Planck intensity data with a
prior on the optical depth of τ = 0.06±0.01. This gives us lower constraints on τ -estimate.
We also include an additional 20% of the sky from Planck in the range 30 ≤ ` ≤ 2500.
This is done, accordingly with Ade et al. (2019), in order to produce an overall sky area of
60%, which is compatible with the area used by Planck after masking the Galaxy. We use
a simple white noise model, with an amplitude of 30 µK arcmin in temperature and 60
µK arcmin in polarization, to account for the Planck noise characteristics. The full width
half maximum (FWHM) of the beam is set to 7◦. We refer to the second as CV+SO, that
differs from the previous one by the inclusion of cosmic variance limited resolution on the
EE power spectrum over 100% of the sky in the range 2 ≤ ` ≤ 29. The last one, hereafter
CV, is an ideal experiment in which we have cosmic variance limited resolution on power
spectra in all the available multipole range (2≤ ` ≤ 4000). The lensing noise curves are
built through the quadratic estimator described in Okamoto and Hu (2003).

For these three different experimental configurations, we also produce a set of extended
ΛCDM mock data. Precisely, these include ΛCDM+∆ model with ∆ = [0.5, 1.5, 2.5, 3.5]×
10−4 Mpc−1; a ΛCDM+mν model with mν = [0.1, 0.15] eV; a ΛCDM+Neff model with
Neff = [2.9, 3.11].

Finally, for each of the datasets described, we build two sub-datasets. The former
combines the EE power spectrum in the low-multipole range (2 ≤ ` ≤ 29) with the TT,
TE and EE power spectra in the high-multipole range (30 ≤ ` ≤ 4000). This choice
guarantees the possibility of break the Ase−2τ degeneracy by constraining the reionization
optical depth through the large-scale polarization measurement. The latter combines the
TT power spectrum in the low-multipole range with the TT, TE, EE power spectra plus
lensing potential in the high-multipole range. As for the large-scale polarization probe,
also this combination allows us to break the Ase−2τ degeneracy, this time by constraining
the scalar amplitude As through lensing observation. In what follows, we refer to these
two likelihoods as lEhTE (lowE highTTTEEE) and lThTEφ (lowT highTTTEEE lensing)
respectively. These two datasets are used to quantify the information content of lensing
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potential and large-scale polarization measurements in terms of information theory.

6.2 Methods

In this section, we are going to explore the methods used to quantify the effects induced by
the two cosmological probes on both ΛCDM parameters and some of its extensions. We
firstly report the constraints on ∆, mν and Neff . We focus the attention primarily on ∆
since there are no-updated constraints on it. Subsequently, we forecast which experimental
setup is needed to have a more than 3 σ detection of this parameter. We further quantify
the information content of lensing and large-scale polarization measurement using concepts
of information theory.

We use the Shannon-entropy defined in Sec. 3.4. If we denote the posterior distribution
as p(θ), given an opportune choice of parameters θ, it reads

S = −
∫
dθp(θ) ln p(θ) . (6.2)

The value of S depends on both the dimensionality of the problem and the logarithmic
volume of parameter space bounded by 1σ contour: better is the constraints, and higher is
its absolute value. In other words, S assumes small numbers for a peaked likelihood. How-
ever, the exact computation of this object requires the evaluation of Bayesian evidence,
that is in general an expensive computational challenge. One can give up his calcula-
tion and ask himself what distribution maximises it, by obtaining a lower bound for the
information content. For this propose, we observe that among all distributions with a
fixed variance, the Gaussian distribution is the one that maximise the Shannon-entropy,
see Sec. 3.4.1. As it maximises entropy, this solution represents the distribution that as-
sumes the least information given the constraints on the variance. This result provides
a huge simplification, since it allows us to compute the S analytically once we know the
covariances Σ of the chosen parameters. The Shannon entropy, in this case, reads (cfr.
Eq. (3.88))

S = 1
2 ln

[
(2π)d|Σ|ed

]
, (6.3)

where d is the dimensionality of the distribution. We can compare the lThTEφ and lEhTE
datasets with their union to estimate the information content carried by these two probes
by comparing probability densities functions with statistical non-independence. That is,
one can define relative entropies between two distributions. The relative entropy in the
Shannon entropy case is the Kullback-Leibler divergence (Kullback and Leibler 1951)

∆S =
∫
dθp(θ) ln p(θ)

q(θ) . (6.4)

Notice that, in general, also the evaluation of this object is computationally expen-
sive. However, since we are comparing the two normally-distributed posteriors, p(θ) ∼
N (θ;µ1,Σ1) and q(θ) ∼ N (θ;µ2,Σ2) (the one that maximise the Shannon-entropy), we
can use the analytical expression given by (cfr. Eq. (3.91))

∆S [p(θ)|q(θ)] = 1
2 (µ1 − µ2)>Σ−1

2 (µ1 − µ2) +

+ 1
2

[
Tr
(
Σ1Σ−1

2

)
− d− log

(det Σ1
det Σ2

)]
.

(6.5)

An interesting interpretation can be given by setting p(θ) equal to the Gaussian approxi-
mation of the full dataset posterior and q(θ) equal to the Gaussian approximation of the
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lThTEφ or lEhTE posterior. In this case the entropy divergence (∆SFT or ∆SFE) quan-
tifies by how much the entropy will decrease by adding polarization lE (lowE) or lensing
lThφ (lowT highφ) measurement to the data. Thus, we expect that more information is
gained adding a complementary dataset, higher is the value of the Kullback-Leibler diver-
gence. This is well captured in Fig. 6.1, where it is shown the relative entropies for the full
likelihood of a ΛCDM for a successive and cumulative probe combination adding CMB-
lensing, galaxy clustering and weak lensing to the primary CMB (Pinho et al. 2020). Here
we can observe a reduction in uncertainty achieved through the combination of cosmolog-
ical probes reflected by smaller absolute information entropies. The same is repeated for
five parameters individually.
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Figure 6.1: Relative entropies ∆S for the full likelihood of a ΛCDM, and for n = 5 parameters individually, both
marginalised and conditionalised, for a successive and cumulative probe combination adding CMB-lensing, galaxy
clustering and weak lensing to the primary CMB (Pinho et al. 2020).

Notice that the relative entropy is sensitive to differences between parameter values
derived with different probes, but in addition there is a dependence on the difference
between the errors. As an example, we can consider Eq.(6.5) where it is clear that each
mismatch in parameter estimates can be reabsorbed by varying the magnitude of the
covariance matrix. Indeed, if we assume that p(θ) is derived combining the posterior q(θ)
obtained using old dataset with some addition of complementary data, it can be shown
that (see, e.g. Seehars et al. 2014)

〈∆S [p(θ)|q(θ)]〉 = −1
2 log |Σ1|

|Σ2|
(6.6)

σ2(∆S) = 1
2Tr

[(
Σ1Σ−1

2 − I
)2
]
. (6.7)

Thus, if there is no improvement by adding some complementary data in constraining
parameters, we expect 〈∆S〉 ∼ 0 and σ2(∆S) ∼ 0. Then, each mismatch in parameter
estimates will increase the “surprise” (∆S − 〈∆S〉) of obtaining a ∆S different from zero.
This is not true anymore if there is also a change in the magnitude of the covariance matrix.
This property can be used to quantify the magnitude of systematical errors and tensions
between data sets (Amara and Refregier 2013; Seehars et al. 2014, 2016; Nicola et al. 2019;
Pinho et al. 2020). However, in this thesis, we aim to quantify only the information gain
when we add polarization or lensing measurement to the complementary dataset. This
kind of analysis is left for future work.
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6.3 Information content of different CMB probes

The most recent constraint up to date on ∆ is given in Gruppuso et al. (2018), where
they used the Commander 2015 solution (Planck Collaboration XI 2016) in temperature
and a noise weighted combination of WMAP and Planck in polarization. They shown
that the value of this scale parameter changes with the amount of excluded Galactic
latitude, capturing the enhancement of the lack-of-power anomaly with the reduction
of the temperature sky fraction (Gruppuso and Sagnotti 2015; Monteserin et al. 2008;
Cruz et al. 2011; Gruppuso et al. 2013; Planck Collaboration VII 2018). The value that
they quoted using the Commander 2015 standard mask (Planck Collaboration XI 2016) is
∆ = (1.7±0.9)×10−4 Mpc−1 (68% CL). With only an available sky fraction of fsky = 39%,
they found a value of ∆ = (3.5± 1.1)× 10−4 Mpc−1 (68% CL), which correspond to a ∼3
σ detection. The corresponding dependency from the sky fraction in polarization is not
yet analyzed.

Thus, the first step is to extract updated constraints on ∆. Here we employ the
three different datasets described in Sec. 4.1, namely WMAP+LFI, SimAll and Sroll2,
using the MCMC CosmoMC (Lewis and Bridle 2002) sampler to estimate the parameters
posterior distributions. All these three dataset employ the Commander 2018 mask (Planck
Collaboration V 2019) in temperature. The values that we find, at 68% CL, are shown in
Tab. 6.1. As we can see, all the values are consistent with the previous quoted in Gruppuso
et al. (2018), leading, in the most constraining case, to a 1.6σ detection. Note that, since
the HFI based datasets better constrain the value of the optical depth τ , the value of ∆
tends to decrease due to the mild degeneracy between the two parameters, see left panel
of Fig. 6.2. The corresponding marginal posterior probabilities for ∆ in the three different
cases are shown in the right panel of Fig. 6.2.
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Figure 6.2: Left Panel: Joint posterior probability for scale parameter ∆ and optical depth τ , computed from
WMAP+LFI, SimAll, and Sroll2 datasets. Right Panel: Marginal posterior probability for scale parameter ∆,
computed from WMAP+LFI, SimAll, and Sroll2 datasets.

Table 6.1: Constraints on ∆ at 68% CL for the different dataset employed.

Dataset 104 ×∆ [ Mpc−1 ]
WMAP+LFI 1.79± 0.83
SimAll . . . 1.43± 0.82
Sroll2 . . . 1.32± 0.78

It is worth noting that, due to the increasing statistical significance of the lack-of-
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Figure 6.3: Improvement on the detectability of ∆ in unit of σ as a function of ∆.

power anomaly with the decreasing of the available sky fraction, we are not able to fix a
fiducial value for this scale parameter. Thus, it is interesting to forecast the detectability
of ∆ due to an improvement of the experimental setup as a function of ∆ itself. In fact,
increasing the value of this scale parameter means more suppressing the power on a large
scale. As a consequence, there is a decreasing of cosmic-variance. This undoubtedly affects
the capability of constraining ∆. Here we use the three mock datasets, StdSO, CV+SO,
and CV, built in a ΛCDM+∆ framework with ∆ = [0.5, 1.5, 2.5, 3.5]× 10−4 Mpc−1. This
range of values is consistent with the findings reported in Tab. 6.1. Precisely, the lowest
value, ∆ = 0.5×10−4 Mpc−1, corresponds to a 1.6 σ shift with respect to the WMAP+LFI
value. The highest value, ∆ = 3.5 × 10−4 Mpc−1, as well as being consistent with the
finding in the extended mask (Gruppuso et al. 2018), correspond, in the worst case, to a
2.8 σ shift with respect to the Sroll2 value.

The choice, in our opinion, the only reasonable one, to select a range of ∆’s leads
to answer the question: Which is the lowest detectable value of ∆ once the experimental
setup is improved? We found that the lowest value of ∆ allowing for a ∼ 2σ detection is
∆ = 1.5×10−4 Mpc−1, with an improvement of the ∼ 15% on the error between the StdSO
and the CV cases. The value of ∆ = 2.5 × 10−4 Mpc−1, that correspond to a 0.8 σ shift
with respect to WMAP+LFI and to a 1.5 σ shift with respect to Sroll2, can potentially
be detected at more than 3 σ for experiment like CV+SO. Fixing ∆ = 3.5× 10−4 Mpc−1,
its detectability can reach ∼ 6σ, with an improvement of 24% on the error between the
StdSO and the CV cases. These results are shown in Fig. 6.3.

Table 6.2: Constraints on mν (at 95% CL) and Neff (at 68% CL) for the different dataset employed.

Dataset mν (eV) Neff

WMAP+LFI < 0.38 2.92± 0.19
SimAll . . . < 0.25 2.89± 0.19
Sroll2 . . . < 0.27 2.89± 0.19

We report also the values of mν and Neff obtained from the WMAP+LFI dataset.
This choice is due to the absence of such an estimate in literature because of the recent
delivery of this dataset. The results are shown in Tab. 6.2, where we report also the values
obtained from SimAll and Sroll2 for completeness.

At this point, we can proceed in the analyses and quantify the information carried
by the two discussed probe. The left panel of Fig. 6.4 shows the values of the Shan-
non entropy computed as in Eq. (6.3) using the posteriors of WMAP+LFI, SimAll and
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Figure 6.4: Left Panel: Behaviour of the Shannon entropy computed by using the current available CMB data.
Right Panel: Behaviour of the Shannon entropy computed by using the forecasts datasets.

Sroll2 datasets. Here we report the information for the full, lEhTE and lThTEφ likeli-
hoods. The Sroll2 dataset, as expected, is the one with the higher constraining power.
This result shows how the reduction in the volume of parameter space, due to a better
breakdown of the Ase

−2τ degeneracy, strongly depends on the low-` polarization mea-
surement. However, for the ΛCDM model, there is no significant difference in the overall
information content between the two probes. This effect is basically due to the choice of
the base parameters. Indeed, only three over six of them strongly depend from the large
scale measurements, one of which is also an internally derived parameter. Instead, the
current precision level of large-scale polarization measurement, compared with the lens-
ing likelihood, emphasize its global higher information content in both ΛCDM+mν and
ΛCDM+Neff frameworks. The ΛCDM+∆ model is strongly dependent from the temper-
ature measurement by construction. This effect makes the lThTEφ likelihood favoured
respect the large-scale polarization in disentangling the mild degeneracy between τ and ∆.
Finally, note that all three datasets share the same large-scale temperature, small-scale
data, and lensing likelihood. This explains why the Shannon entropy of the full dataset is
driven by the behaviour of the lEhTE dataset. Furthermore, the Shannon entropy results,
in general, lower for the extended models. This result reflects the change in both the di-
mensionality and the volume of parameters space. Note that, this reduction is drastically
enhanced for the ΛCDM+∆ model, since there is also a reduction of the cosmic variance
in the first multipoles. This confirms that the comparison can be done only between values
computed assuming the same fiducial model.

The right panel of Fig. 6.4 shows the forecast values of the Shannon entropy computed
using the mock datasets. As expected, there is a reduction of the S with respect to
the current values reported in the left panel of Fig. 6.4. Furthermore, the importance
of lensing measurement became more evident. Indeed, for an SO-like experiment the
global information content is comparable for the two probes if the underlying model is
ΛCDM. For a ΛCDM+mν and ΛCDM+Neff models the information carried by lThTEφ
is greater than the one obtained by lEhTE. Notice that, a CV+SO like experiment largely
improve the constraint on τ and thus on As. Despite that, by adding cosmic variance
limited large-scale polarization measurements there is only a slight improvement on the
overall information content carried by lEhTE dataset. This result is true for all the
cosmological models considered. Finally, a CV ideal CMB experiment tends to enhance
the discrepancies between information content of lensing and polarization measurement in
favour of lThTEφ dataset.

What we have achieved so far does not give us any information on single parame-
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ter. It infers only global behaviour. To quantify the effects induced by adding the two
probes we use Kullback-Leibler divergence as explained in Sec. 6.2. Precisely, to compute
the gain induced by adding large-scale polarization measurement we use the divergence
∆SFT ≡ ∆S[pF |pT ], where pF (θ) and pT (θ) are the full and lThTEφ posterior distribu-
tion, respectively. Similarly, to compute the gain induced by adding the lensing measure-
ment we use the divergence ∆SFE ≡ ∆S[pF |pE ], where pE(θ) is the lThTEφ posterior
distribution. As previously stated, we use the Gaussian approximation in Eq. (3.91).
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Figure 6.5: Behaviour of the Kullback-Leibler divergences computed by using the current available CMB data.
The first column shows the total behaviour, while the others show the gain for each parameter obtained using the
corresponding marginal distributions. The last column refers to the extra parameter of the theory.

Fig. 6.5 shows the results for WMAP+LFI, SimAll and Sroll2 datasets. The first
column represents the total behaviour, while the others show the gain for each parameter
obtained using the corresponding marginal distributions. The last column refers to the
extra parameter of the theory. Focussing the attention on the first column, we can see
that the global behaviour founded with the basic computation of the Shannon entropy
has recovered. There are only small differences due to the more complex structure of
the Kullback-Leibler divergence, that depends on shifts between parameters, change in
degeneracy directions, and overall change in the volume of parameter space. The total
behaviour of ∆S is quite similar for SimAll and Sroll2. The results for each considered
model, except for ΛCDM+∆, highlight the highest gain obtained when lE data has added.
This effect is mainly driven by the constraints on τ given by large-scale polarization data.
It is known that the small-scale data prefers a higher As, thus using only the lThTEφ
likelihood push the value of τ towards higher value widening also the respective posterior.
Furthermore, since the optical depth affects the relative power between large-scales and
intermediate and small-scales (that have their power suppressed by e−2τ ), there is a partial
degeneracy with ns. A variation of ns can affects the relative heights of the first few peaks
making this parameter partially degenerate with Ωbh

2. Thus lE measurements are of
crucial importance to break all these internal degeneracies of the model. The ΛCDM+∆
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model shows a similar behaviour. However, due to the partial degeneracy between τ and
∆, the constraint on the optical depth becomes weaker. The overall result is a shrinking
of the difference between τ from lEhTE and lThTEφ. It is worth notice that, as pointed
out in Planck Collaboration VI (2018), the stringent constraint on τ coming from large-
scale polarization measurements pushes the scalar amplitude, As, through lower values
to match the high-` value. This reduction of parameter spaces allows only lowest value
for the masses of neutrino, giving, as a result, more stringent constraints using only the
lEhTE likelihood. The same behaviour is not seen by forecast since there is no mismatch
between high-` and low-` measurements. The impact of the two probes on the estimation
of extra parameter for WMAP+LFI remains the same. However, the overall situation
reflects both the weakest constraint on the reionization optical depth and the preference
for this dataset towards higher value of τ . This effect makes the lThφ dataset more
suited for giving constraints on cosmological parameters. The only exception remains the
ΛCDM+mν model, in which the neutrino mass constraint plays a crucial role.
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shows the total behaviour, while the others show the gain for each parameter obtained using the corresponding
marginal distributions. The last column refers to the extra parameter of the theory.

Fig. 6.6 shows the results for the mock datasets. As we can see from the last column,
the lThφ data helps us to better constraint the extended parameters. The results in
the ΛCDM+mν framework show how lensing is crucial in disentangling the degeneracy
between mν and the angular size at the time of last-scattering, θ∗. Once θ∗ is fixed,
the parameter space with larger neutrino masses is reduced, giving tighter constraints on
the mν . The large-scale polarization power spectrum, instead, is not very sensitive to a
change of θ∗, making this effect unchanged for all the configuration setup employed. This
result allows for an higher tail in the posterior of mν estimated through the lE dataset.
As compensation, since this dataset knows nothing about a change of the relative heights
of the even and odd acoustic peaks, there is a mild preference toward lower values of
Ωbh

2. The mild degeneration with ns also push the scalar spectral index toward lower
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values. This highlights in which way the lensing measurements are affecting the neutrino
mass estimation. For the other models, there is no evidence of effects induced on single
parameter employing the two different probes. The total behaviour has then driven by the
change in the degeneracies directions, jointly with the information on the extra parameter.
The only two exceptions are the Ωbh

2 and ns estimates in the ΛCDM+∆ and ΛCDM+Neff

models, respectively. When ∆ is included in the model, the value of ns remains stable
when estimated using lThTEφ or lEhTE. This effect follows from the fact that ∆ change
the position of the reionization peak, as well as dumping it. Varying ns, instead, has as a
consequence a change in the tilt. Thus the two effects are mostly uncorrelated. However,
the shift of the reionization peak makes the large-scale polarization estimate partially
degenerate with Ωbh

2, since, as stated before, the low-` is poorly affected by a change
of the relative heights of the even and odd acoustic peaks. This effect is not seen in
the lThTEφ dataset due to the presence of lensing. In the ΛCDM+Neff framework, the
degeneracy between Neff and ns makes the lensing more informative in disentangling this
effect.

6.3.1 The effect induced by the presence of a missing parameter

In this section, we are going to explore the effect induced by the presence of a missing
parameter. This analysis completes the information extrapolated previously by estimating
how the extra parameter affects the base-ΛCDM estimates and which is the responsible
probe of it. We use the mock datasets built in the ΛCDM, ΛCDM+∆, ΛCDM+mν , and
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Figure 6.7: Behaviour of the base-ΛCDM parameters estimated imposing ΛCDM+∆ as theory and ΛCDM as model.
The black dotted lines represent the fiducial values of ΛCDM parameters.

ΛCDM+Neff frameworks and described in Sec. 6.1. For each theory we estimate the
base-ΛCDM parameters, assuming ΛCDM as a model. Again, here we consider the full,
lThTEφ, and lEhTE likelihoods. Note that, each probe (lensing or polarization) is affected
in a different way, depending on the extended model considered. Since other parameters
can mimic the same effect, this method allow us to spot which observable has to be better
measured to break these degeneracies.

Figures 6.7-6.9 show the results of these estimates. Each parameter has a peculiar
fingerprint. The presence of an unaccounted ∆-like parameter in the model, for example,
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does not affect the values of τ and As estimated when the lensing likelihood is used to
break the Ase−2τ degeneracy, see Fig. 6.7. However, there is a mild preference towards
higher values of ns to compensate the extra-tilt induced by ∆. This effect pushes θ∗ and
Ωbh

2 toward higher and lower values, respectively. When the full likelihood has considered,
the As estimate has dragged by lensing measure. To compensate for this effect, a higher
value of Ωch

2 has preferred. As a consequence, θ∗ results lower than the best-fit value.
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Figure 6.8: Behaviour of the base-ΛCDM parameters estimated imposing ΛCDM+mν as theory and ΛCDM as
model. The black dotted lines represent the fiducial values of ΛCDM parameters.

The presence of an unaccountedmν-like parameter in the model, instead, has a different
effect on the base-ΛCDM parameters, see Fig. 6.8. The main effect is to compensate for
the presence of mν > 0.06 eV by lowering of As estimated using the lThTEφ likelihood.
The large-scale polarization dataset is mostly insensitive to the presence of mν leaving the
τ estimate unaltered. Both the likelihood employed show a preference toward a higher
value of θ∗. When the full likelihood has considered, the information on τ coming from
large-scale polarization measurement dominates, dragging both τ and As toward their
fiducial values. This effect has compensated by a lowering of Ωch

2 and ns. To remain in
a high probability region of parameter space, the value of θ∗ increase further.

Assuming ΛCDM as the model with ΛCDM+Neff as the underlying theory has the
most dramatic impact on the six base parameters, see Fig. 6.9. The presence of an unac-
counted Neff -like parameter changes the relative height of the acoustic peaks. This effect
makes Neff partially degenerate with Ωbh

2 and Ωch
2. It is worth to notice that the con-

straining power in terms of Ωch
2 estimate of the lensing likelihood is only poorly higher

than the lE dataset. The value of Ωbh
2, instead, results slightly more affected by the

presence of Neff in the lThTEφ dataset. This effect is driven by the degeneracy with ns,
and also in this case the lensing estimate prefer values slightly far away from the fiducial
value. The major difference between the two datasets relies on the effect induced on As,
and then τ .
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Conclusions

In this thesis, we have studied three application of statistical analyses techniques to CMB
data. We have used Bayesian, frequentist, and information theory approaches.

We start describing the basics of the currently-accepted Standard Model of Cosmology
in Chapter 1. We describe the homogeneous background parametrization, reviewing the
thermal history of the Universe and highlighting the connections between inflation and
the CMB radiation. In Chapter 2, we move our attention to the CMB, which is the
main observable used in this thesis. We characterize both temperature and polarization
anisotropies, briefly reviewing the fingerprint of reionization on CMB. Before presenting
the original part of the work, in Chapter 3, we review some concepts on data analysis
techniques, focussing the attention on three different frameworks in which interpreting
probability.

We reserve the last three chapters for the original work of this thesis. In Chapter 4, we
present a novel CMB pixel-space likelihood focussed on polarization at large angular scales,
whose main cosmological target is the optical depth to reionization, τ . The underlying
dataset combines foreground-mitigated WMAP Ka, Q, and V bands with Planck LFI 70
GHz channel in an optimally weighted CMB map. In the foreground cleaning of WMAP
bands, we adopt the Planck 353 GHz channel as a dust template, instead of the WMAP
dust model based on starlight-derived polarization directions. As a synchrotron template,
the K band is used for WMAP channels, while Planck 30 GHz is used for the 70 GHz map.
The corresponding covariance matrix is computed coherently and fed, together with the
cleaned CMB map, into a pixel space likelihood, made publicly available. We produced
a set of masks with increasing sky fraction and used them to test the performance of the
component separation, the quality of polarization power spectra, and the overall stability
of τ constraints, showing a remarkable stability among sky fractions.

For the baseline dataset, which retains 54% of the sky, the `-by-` probability to exceed
the χ2 of the measured angular power spectra (PTE) does not show any major outlier, with
only ` = 18 and 23 of BB and ` = 23 of EB spectra at more than 2.5-σ. Consequently, the
integrated PTEs are perfectly consistent with simulations both on the reionization peak
only (i.e., ` = 2÷ 10) and on the full multipole range (i.e., ` = 2÷ 29).

Regarding the reionization optical depth estimation, we compared the variation of τ
estimated on different sky fractions with a Montecarlo of signal plus noise, finding no
significant deviations for the baseline dataset compared with other sky fractions, up to
fsky ∼ 70%.

Sampling the parameter space with our low-` likelihood only, we find τ = 0.069+0.012
−0.011.

When CMB small scales, BAO observations, and Planck lensing likelihood are included,
we shrink optical depth constraint down to τ = 0.0714+0.0087

−0.0096. Such bounds are slightly
less constraining when compared with the existing Planck HFI based likelihood (see, e.g.,
Planck Collaboration V 2019; Pagano et al. 2019, and our Fig. 4.10), yet they represent a
novel measurement obtained with an independent pipeline that adopts different data and
likelihood approximation and includes TE correlations, while the Planck HFI estimates
are currently restricted to EE information. The τ estimates obtained with the likelihood
package discussed in this chapter is, in general, very compatible with the Planck HFI based
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constraints, with a preference for slightly higher τ values, probably driven by the inclusion
of TE. This bound is also in perfect agreement with the Planck LFI Legacy likelihood
(Planck Collaboration V 2019). Within the ΛCDM model, τ can be also constrained
without the use of polarization data to break the degeneracy between As and τ, combining
temperature and weak lensing data. In this kind of analysis, the Planck collaboration
found τ = 0.080 ± 0.025 from temperature and lensing data and τ = 0.078 ± 0.016 when
BAO is added (Planck Collaboration ES 2018). Those values, despite being slightly higher
than previous findings (Weiland et al. 2018; Planck Collaboration XIII 2016), are still in
agreement with our constraints.

The likelihood package we provided is built on a real-space estimator and does not
assume rotational invariance, but, rather, only the Gaussianity of the fields, which se-
cures several advantages. For instance, it can also be easily used for constraining non-
rotationally invariant cosmologies, including, naturally, the TB and EB spectra in the
parameter exploration. Furthermore, it allows to obtain an independent estimate of the
reionization optical depth that can be used for different purpose. It can be used to test
extended reionization model since it provides an optimal dataset for robustness test due to
the combination of all the channels, TT, TE, EE, and BB (see, e.g. Paoletti et al. 2020).
For the same reason, it can be used to add complementary information in the study of
some CMB anomalies (see, e.g. Chiocchetta et al. 2020).

In Chapter 5, we analyse the lack-of-power anomaly, a well known characteristic of the
CMB temperature anisotropy pattern showing up at large angular scales. In particular, we
focus on the intriguing fact that this feature is statistically more significant (at a ∼ 3σ)
when only high Galactic latitude data are taken into account. The latter observations
suggests that most of the large scale anisotropy power happens to be mainly localised
around the Galactic plane. This might sound bizzarre because the early universe should
not know anything about the “direction” of the disk of our Galaxy. To tackle the issue,
we evaluated how often a ΛCDM realisation happens to have most of its power localised
at low Galactic latitude.

To support the analysis, we generate a ΛCDM Monte Carlo set of 105 CMB maps
from the Planck 2018 best-fit model. By analysing this set, we first show that the Planck
2018 data exhibits the same trend of decreasing CMB field variance while increasing the
Galactic mask, which was found previously in the literature. We then proceed to randomly
rotate the simulated maps (denoted as ensemble 0), as well as the data, 103 times. The
rotated maps are employed to compute the empirical distribution function of two estima-
tors, based on the CMB field variance (Section 5.2). With the LTP-estimator (Section
5.2.1) we test to what extent the low CMB anisotropy power in the data depends on the
orientation of the Galactic plane. With the r-estimator (Section 5.2.1) we assess instead
the behaviour against rotation of the decreasing trend of the CMB variance at increas-
ing Galactic latitude. The introduction of random rotations is a key-element to evaluate
whether the lack of power anomaly is indeed correlated with Galactic latitude.

To further investigate this behaviour we also select from the 105 ΛCDM simulations
set a smaller set, of 103 maps, which exhibits the same low-variance as the one observed in
the Commander and SMICA 2018 maps. We call this set ensemble 1 and repeat the analyses
performed on the ensemble 0.

We find that even when performing random rotations, our CMB sky is anomalous
in power at about 2.8− 2.5σ depending on the considered component separation method
when employing the LTP estimator. Specifically, only 5 maps out of 105 have a LTP at high
Galactic latitude (in the Ext30 mask) smaller than the Planck Commander data. For the r-
estimator we evaluate that only the 0.2% of the maps show a larger value of r between Std
2018 and Ext30 masks, again with respect to Commander. Results are substantially stable
if we employ SMICA in place of Commander. Finally, using the low-variance constrained
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simulation of ensemble 1 yields similar results, showing that having a low-variance field in
the first place is not enough to justify the observed trend with Galactic latitude.

In conclusion, the introduction of rotations do not spoil the lack of power anomaly
at high Galactic latitude which turns out to be quite stable against the “look-elsewhere
effect” spawned by random rotations of the reference frame.

In Chapter 6, we focus on the comparison between the information content carried
separately by lensing and large-scale polarization measurements. We establish the effects
induced by an improvement of the experimental setup on ΛCDM, ΛCDM+∆, ΛCDM+mν ,
and ΛCDM+Neff parameters. For each dataset employed, we build two different likeli-
hoods. The first combines the EE power spectrum in the low-multipole range with the
TT, TE and EE power spectra in the high-multipole range (lEhTE). The second combines
the TT power spectrum in the low-multipole range with the TT, TE, EE power spectra
plus lensing potential in the high-multipole range (lThTEφ). Both these likelihoods are
capable of break the internal degeneracy between As and τ , then providing two indepen-
dent datasets that can be used to quantify the information content carried by the main
CMB observables. We compare them using an information theory-based approach as the
main framework.

We find that, in a ΛCDM+∆ framework, even for a CV-limited experiment on all
scales, the minimum value of ∆ detectable at more than 3σ is ∆ = 2.5 × 10−4 Mpc−1.
This effect is an intrinsic problem of the model. Indeed, due to the cosmic-variance, low
values of ∆ can be reabsorbed varying both τ and As. Furthermore, in this model there are
no strong degeneracies between ∆ and the other ΛCDM parameters, with the exception of
τ . We show that, even if the lThTEφ likelihood carried the highest information content,
this is due only to the changes in degeneracies directions. Indeed, the measurement of τ
coming from large-scale EE spectrum helps to break the degeneracy with ∆. The difference
between the two probes in constraining this parameter is partially cancelled when a CV
setup is employed in the low-multipole range. This effect is highlighted when we do not
include the presence of ∆ in the model. That is, by assuming a ΛCDM model with an
underlying theory which includes ∆, we find that the presence of this characteristic scale
does not affect the ΛCDM parameter estimated using the lThTEφ likelihood.

In a ΛCDM+mν framework, we show how the lensing measurement results crucial in
disentangling the degeneracy between θ∗ and mν . Indeed, the low-` polarization power
spectrum is slightly sensitive to a shift of the acoustic peak. This allows the model to
remain in a high probability region of the parameter space even for lower values of Ωbh

2

and ns. This is a characteristic fingerprint of the neutrino mass. If we have a theory with
a massive neutrino, but we assume a ΛCDM as model, both lThTEφ and lEhTE datasets
prefer higher value for θ∗. This result highlight the importance of lensing measurement to
fix the value of the angular size at the time of last-scattering.

The presence of Neff has a non-trivial effect on all ΛCDM parameters. Even in this
case, as for mν , the most informative probe is lensing. We show that this behaviour is
driven by the degeneracy with ns, which is partially degenerate with Ωbh

2. This effect has
remarked when we have the unaccounted presence of Neff in the model. Indeed, in this
case, the estimate of ns and Ωbh

2 result more shifted from the fiducial value, showing a
larger bias with respect the lEhTE dataset estimates.

In conclusion, our results spoil the induced effects on parameter estimation by con-
sidering both lensing and large-scale polarization measurements separately. In particular,
we quantify the importance of improving lensing measurement to constrain some charac-
teristic features of some of the most debated cosmological models, such as ΛCDM + mν

and ΛCDM + Neff . We also show how future large-scale polarization measurement can
increase our understanding of more exotic scenarios, such as ΛCDM+ ∆. This leads to a
more competitive need to improve both the observables at our disposal.
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Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and
Bartelmann, M. (2005). HEALPix: A Framework for High-Resolution Discretization
and Fast Analysis of Data Distributed on the Sphere. ApJ, 622:759–771.

Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences: A Compar-
ative Approach with Mathematica R© Support. Cambridge University Press.

Gruppuso, A. (2007). A Complete Statistical Analysis for the Quadrupole Amplitude in
an Ellipsoidal Universe. Phys. Rev. D, 76:083010.

Gruppuso, A., De Rosa, A., Cabella, P., Paci, F., Finelli, F., Natoli, P., de Gasperis, G.,
and Mandolesi, N. (2009). New estimates of the CMB angular power spectra from the
WMAP 5 yrs low resolution data. Mon. Not. Roy. Astron. Soc., 400:463–469.



BIBLIOGRAPHY 112

Gruppuso, A., Finelli, F., Natoli, P., Paci, F., Cabella, P., De Rosa, A., and Mandolesi,
N. (2011). New constraints on Parity Symmetry from a re-analysis of the WMAP-7 low
resolution power spectra. Mon. Not. Roy. Astron. Soc., 411:1445–1452.

Gruppuso, A., Kitazawa, N., Lattanzi, M., Mandolesi, N., Natoli, P., and Sagnotti, A.
(2018). The Evens and Odds of CMB Anomalies. Phys. Dark Univ., 20:49–64.

Gruppuso, A., Kitazawa, N., Mandolesi, N., Natoli, P., and Sagnotti, A. (2016). Pre-
Inflationary Relics in the CMB? Phys. Dark Univ., 11:68–73.

Gruppuso, A., Natoli, P., Paci, F., Finelli, F., Molinari, D., De Rosa, A., and Mandolesi,
N. (2013). Low Variance at large scales of WMAP 9 year data. JCAP, 07:047.

Gruppuso, A. and Sagnotti, A. (2015). Observational Hints of a Pre–Inflationary Scale?
Int. J. Mod. Phys. D, 24(12):1544008.

Guth, A. H. (1987). The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems. Adv. Ser. Astrophys. Cosmol., 3:139–148.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109.

Hazra, D. K., Paoletti, D., Finelli, F., and Smoot, G. F. (2019). Joining bits and pieces
of reionization history.

Hazra, D. K. and Smoot, G. F. (2017). Witnessing the reionization history using Cosmic
Microwave Background observation from Planck. JCAP, 1711(11):028.

Heinrich, C. and Hu, W. (2018). Does Planck 2015 polarization data favor high redshift
reionization? Phys. Rev., D98(6):063514.

Henning, J. et al. (2018a). Measurements of the Temperature and E-Mode Polarization
of the CMB from 500 Square Degrees of SPTpol Data. Astrophys. J., 852(2):97.

Henning, J. W., Sayre, J. T., Reichardt, C. L., Ade, P. A. R., Anderson, A. J., Austermann,
J. E., Beall, J. A., Bender, A. N., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang,
C. L., Chiang, H. C., Cho, H.-M., Citron, R., Moran, C. C., Crawford, T. M., Crites,
A. T., de Haan, T., Dobbs, M. A., Everett, W., Gallicchio, J., George, E. M., Gilbert,
A., Halverson, N. W., Harrington, N., Hilton, G. C., Holder, G. P., Holzapfel, W. L.,
Hoover, S., Hou, Z., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., Keisler, R.,
Knox, L., Lee, A. T., Leitch, E. M., Li, D., Lowitz, A., Manzotti, A., McMahon, J. J.,
Meyer, S. S., Mocanu, L., Montgomery, J., Nadolski, A., Natoli, T., Nibarger, J. P.,
Novosad, V., Padin, S., Pryke, C., Ruhl, J. E., Saliwanchik, B. R., Schaffer, K. K.,
Sievers, C., Smecher, G., Stark, A. A., Story, K. T., Tucker, C., Vanderlinde, K., Veach,
T., Vieira, J. D., Wang, G., Whitehorn, N., Wu, W. L. K., and Yefremenko, V. (2018b).
Measurements of the temperature and e-mode polarization of the CMB from 500 square
degrees of SPTpol data. The Astrophysical Journal, 852(2):97.

Hinshaw, G. et al. (2013). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Parameter Results. Astrophys. J. Suppl., 208:19.

Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C. L., Dunkley, J., Nolta,
M. R., Halpern, M., Hill, R. S., Odegard, N., Page, L., Smith, K. M., Weiland, J. L.,
Gold, B., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wollack, E.,
and Wright, E. L. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Parameter Results. ApJ Supp., 208:19.



BIBLIOGRAPHY 113

Hogg, D. W., Eisenstein, D. J., Blanton, M. R., Bahcall, N. A., Brinkmann, J., Gunn,
J. E., and Schneider, D. P. (2005). Cosmic homogeneity demonstrated with luminous
red galaxies. Astrophys. J., 624:54–58.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University
Press.

Kamionkowski, M., Kosowsky, A., and Stebbins, A. (1997). Statistics of cosmic microwave
background polarization. Phys. Rev. D, 55:7368–7388.

Kim, J. and Naselsky, P. (2010a). Anomalous parity asymmetry of the Wilkinson Mi-
crowave Anisotropy Probe power spectrum data at low multipoles. Astrophys. J. Lett.,
714:L265–L267.

Kim, J. and Naselsky, P. (2010b). Anomalous parity asymmetry of WMAP power spectrum
data at low multpoles: is it cosmological or systematics? Phys. Rev. D, 82:063002.

Kosowsky, A., Milosavljevic, M., and Jimenez, R. (2002). Efficient cosmological parameter
estimation from microwave background anisotropies. Phys. Rev. D, 66:063007.

Krachmalnicoff, N., Baccigalupi, C., Aumont, J., Bersanelli, M., and Mennella, A. (2016).
Characterization of foreground emission on degree angular scales for CMB B-mode
observations - Thermal dust and synchrotron signal from Planck and WMAP data.
Astron. Astrophys., 588:A65.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.
Statist., 22(1):79–86.

Lattanzi, M., Burigana, C., Gerbino, M., Gruppuso, A., Mandolesi, N., Natoli, P., Polenta,
G., Salvati, L., and Trombetti, T. (2017). On the impact of large angle CMB polarization
data on cosmological parameters. JCAP, 1702(02):041.

Lewis, A. (2008). Cosmological parameters from WMAP 5-year temperature maps. Phys.
Rev. D, 78(2):023002.

Lewis, A. and Bridle, S. (2002). Cosmological parameters from CMB and other data: A
Monte Carlo approach. Phys. Rev. D, 66(10):103511.

Lewis, A. and Bridle, S. (2002). Cosmological parameters from CMB and other data: A
Monte Carlo approach. Phys. Rev., D66:103511.

Louis, T. et al. (2017). The Atacama Cosmology Telescope: Two-Season ACTPol Spectra
and Parameters. JCAP, 06:031.

Lyth, D. H. and Liddle, A. R. (2009). The primordial density perturbation: Cosmology,
inflation and the origin of structure.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation
of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092.

Millea, M. and Bouchet, F. (2018). Cosmic microwave background constraints in light of
priors over reionization histories. A&A, 617:A96.

Molinari, D., Gruppuso, A., Polenta, G., Burigana, C., De Rosa, A., Natoli, P., Finelli,
F., and Paci, F. (2014). A comparison of CMB Angular Power Spectrum Estimators at
Large Scales: the TT case. Mon. Not. Roy. Astron. Soc., 440(2):957–964.



BIBLIOGRAPHY 114

Monteserin, C., Barreiro, R., Vielva, P., Martinez-Gonzalez, E., Hobson, M., and Lasenby,
A. (2008). A low CMB variance in the WMAP data. Mon. Not. Roy. Astron. Soc.,
387:209–219.

Muir, J., Adhikari, S., and Huterer, D. (2018). Covariance of CMB anomalies. Phys. Rev.
D, 98(2):023521.

Mukhanov, V. (2005). Physical Foundations of Cosmology. Cambridge University Press,
Oxford.

Natale, U., Gruppuso, A., Molinari, D., and Natoli, P. (2019). Is the lack of power anomaly
in the CMB correlated with the orientation of the Galactic plane? JCAP, 12:052.

Natale, U., Pagano, L., Lattanzi, M., Migliaccio, M., Colombo, L., Gruppuso, A., Natoli,
P., and Polenta, G. (2020). A novel CMB polarization likelihood package for large
angular scales built from combined WMAP and Planck LFI legacy maps. accepted by
Astron. Astrophys.

Nicola, A., Amara, A., and Refregier, A. (2019). Consistency tests in cosmology using
relative entropy. JCAP, 01:011.

Okamoto, T. and Hu, W. (2003). CMB lensing reconstruction on the full sky. Phys. Rev.,
D67:083002.

Pagano, L., Delouis, J. M., Mottet, S., Puget, J. L., and Vibert, L. (2019). Reionization
optical depth determination from Planck HFI data with ten percent accuracy.

Page, L., Hinshaw, G., Komatsu, E., Nolta, M. R., Spergel, D. N., Bennett, C. L., Barnes,
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