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Abstract

The effects of discontinuities on higher order modes is important in the design

of passive and active noise control systems in ducts which operate near or above the

cut-off frequency of the duct. Accurate acoustic monitoring of mechanical systems in

ducts at frequencies near and above the cut-off frequency of the first mode must include

the effects of discontinuities.

This thesis examines the reflection, transmission, and coupling of higher order

modes at discontinuities in finite length rigid walled rectangular ducts. Using a method of

generalized scattering coefficients, analytic expressions for the reflection and transmission

of higher order modes at size discontinuities, junctions, and baffled terminations are

developed. A technique to measure the higher order modes is discussed and implemented.

When written in matrix form, the equations for the reflection and transmission

coefficients for all three discontinuities take on the standard form for reflection and

transmission of plane waves at a change of impedance. For all the examples given, the

magnitude of the mutual coupling coefficients can be significant, often larger than that

of the self reflection and transmission coefficients, showing that modal coupling must be

included when working with models near and above the cut-off frequency of the first

higher order mode.

Analytic expressions for the reflection and transmission coefficients of a general

multi-port junction are derived in terms of the Green’s function of the junction region.

Examples of a right angle bend and a T junction are given. It is shown that the magnitude
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of the self transmission coefficient for the plane wave mode in the side branch to the end

of a T junction is found to have many zeros and the overall magnitude decreases with

increasing frequency indicating that side mounted speakers are poor plane wave sources

at frequencies near and above the cut-off of the first mode.

Analytic expressions for the radiation impedances and reflection coefficients for

the termination of a duct in an infinite baffle are derived. It is shown that the radiation

directivity is proportional to the wavenumber transform of the modal velocity. The plane

wave mode radiates omni-directionally at low frequencies and begins beaming on axis

at higher frequencies. The higher order modes radiate toward the sides, with the main

lobes moving toward the axis at higher frequencies. Equations for the total radiated

power in terms of the reflection coefficients of the duct termination and the incident

modal amplitudes are developed.

Experimental measurements of the reflection coefficients of an infinite baffle are

shown to be consistent with theory. Experimental measurements of the reflection and

transmission coefficients of a right angle bend are shown to be consistent with the junc-

tion theory. The thesis also gives a description of some of the potential problems involved

with modal measurement and microphone calibration.
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Chapter 1

Introduction

1.1 Historical Background

1.1.1 Early Work on Reflection and Radiation From Finite Ducts

Research on acoustic waveguides dates back at least as far as Lord Rayleigh

[52]. Rayleigh determined the eigenfunctions of infinitely long rigid walled rectangular

and circular waveguides. Rayleigh also analytically determined end corrections (from

which reflection coefficients can be determined) for low frequency radiation from a baffled

circular duct. The analysis was limited to frequencies far below the cut-off frequency of

the first higher order mode. Rayleigh did not determine end corrections for rectangular

ducts. Rayleigh was unable to determine analytic expressions for end corrections to an

unbaffled circular duct, but he did determine empirical expressions.

Analysis of the unbaffled circular duct proved most troublesome. It was not until

Levine and Schwinger [32] employed the Weiner-Hopf technique that analytic expressions

of the reflection coefficients for an unbaffled circular duct were obtained. However, their

analysis was still limited to frequencies below the cut-off frequency of the first higher

order mode. This analysis was refined by several authors [42, 47].

Weinstein [68], also employing Weiner-Hopf methods, was able to determine re-

flection coefficients for higher order modes at the end of an unbaffled circular duct. In

addition, Weinstein obtained analytic expressions for the reflection coefficients from the
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end of plane parallel waveguides (two semi-infinite parallel plates). Weinstein found that

for an incident plane wave above the cut-off frequency of the first higher order mode, the

magnitude of the mutual reflection coefficient between the plane wave mode and the first

higher order mode can be significantly greater than the magnitude of the plane wave self

reflection coefficient. This result showed that coupling between modes at the end of a

duct is very important when analyzing wave propagation at higher frequencies.

Unfortunately, the Weiner-Hopf method does not allow one to determine the

radiation from the end of rectangular ducts [68]. Even if it did, the mathematics of the

Wiener-Hopf method is steeped in the concepts of analytic function theory and is very

involved. The results are often difficult to numerically evaluate and meaningful physical

interpretation of the results can get lost in the myriad of mathematical symbols.

Zorumski [70] developed the concept of generalized radiation impedances and re-

flection coefficients for infinitely baffled circular ducts. He developed matrix formulations

for the generalized impedance. The method of analysis used in this thesis is similar to

the method Zorumski used.

Recently there has been a large number of papers about radiation from baffled

and unbaffled circular ducts [22, 37, 48, 67]. Much of the work has been prompted by

research in the acoustics of turbofan and turbojet engines.

1.1.2 Early work on other Duct Discontinuities

The low frequency lumped element analysis of acoustic duct discontinuities such

as constrictions, bifurcations, and size changes dates back to Rayleigh as well, but an

early thorough analysis dates back to Mason’s work [36] on acoustical filters.
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Miles [38, 39, 40] extended this work to be valid at frequencies much closer to the

cut-off frequency of the first higher order mode. He basically used a truncated version of

the mode matching technique that Mittra and Lee were to later use in electromagnetic

problems. The thrust of Miles’ research was to develop more accurate lumped element

equivalents of discontinuities.

Soon after Miles’ papers appeared, Lippert [33, 34] published his research on

modal measurement techniques along with theory and experiments on right angled bends.

Doak’s excellent set of papers [18, 19] which discusses higher order modes in rigid

walled rectangular ducts, was a thorough analysis of the generation and propagation of

higher order modes. However Doak’s analysis did not give a good description of the

coupling of higher order modes, an effect which is important at any discontinuity when

higher order modes can propagate. This paper was an important basis for the analysis

of ducting systems and mufflers at higher frequencies. It also rekindled interest in higher

order mode research.

Following Doak’s work, a number of other papers looking at the propagation and

coupling of higher order modes for several different discontinuities in rectangular and

circular ducts were written.

Cummings [17] looked at propagation through 180 degree bends. Firth and Fahy

[21] and Furnell and Bies [23, 24] both looked at curved bends in ducts.

Said [58] looked at propagation in right angle bends and T junctions. He derived

and measured energy coupling coefficients instead of pressure coupling coefficients.

About this same time, the finite element technique began to be applied to acoustic

waveguide problems [14, 15]. While this powerful method allows one to determine the
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overall propagation through a complicated system, it is difficult to determine quantities

like modal amplitudes and coupling coefficients using it. In addition, much of the physics

is lost because there are no analytic results, just tables of numbers.

Nevertheless, Shepherd and Cabelli [59, 60] looked at propagation through right

angled bends using finite elements. They compared their finite element results to exper-

imental results and showed a high degree of accuracy.

Redmore and Mulholland [54] looked at propagation past a side branch (a T

junction) using modal analysis. However, they didn’t explicitly derive reflection and

transmission coefficients, they simply predicted the pressure at a given point in the side

branch.

Working with electromagnetic waveguides, Mittra and Lee [41] developed mode

matching techniques which lend themselves to numerical solutions for problems in which

the Wiener-Hopf method does not apply. The idea of mode matching techniques at a

discontinuity is to expand the solution on either side of the discontinuity in an orthogonal

modal series. Using equations of continuity (in acoustics the pressure and normal velocity

are usually continuous) a number of simultaneous equations are developed. Through the

use of orthogonality the equations can be reduced and solved.

The development of planar microwave waveguide circuits has lead to great ad-

vances in scattering theory for microwave junctions using mode matching techniques

and generalized scattering parameters. [28, 49, 56]. In particular, MacPhie and Zaghloul

published a paper on radiation from a baffled rectangular waveguide [35]. However, the

electromagnetic waveguide is different enough from the acoustic waveguide that the work

done in microwave research cannot be applied directly to acoustic waveguides. Hudde
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[26, 27] has recently begun applying the mode-matching and generalized scattering pa-

rameter techniques to acoustic waveguide problems; however, his work has been limited

to circular waveguides.

A need to examine propagation at higher frequencies has re-emerged with the

development of active noise control systems. Much analysis has been done assuming

plane wave propagations. A few researchers have investigated the effects of higher order

modes on active control [65], while others have looked at the effects of modal coupling on

plane wave propagation [45]. A number of initial investigations into higher order modal

control [3, 4, 55, 61, 62, 63, 64] have been made, but none have considered the modal

coupling present at discontinuities.

1.2 Motivation for Research and Thesis Goals

While there certainly has not been an absence of work in duct acoustics, there

has not been much done on the scattering and coupling of higher order acoustic modes,

especially for rectangular ducts.

The main goal of this thesis is to develop a coherent theory of scattering at modal

discontinuities. In particular, reflection and transmission coefficients will be determined

in terms of generalized scattering parameters and generalized impedances. A few of the

calculations will be experimentally verified.

The applications of such theory are numerous. An obvious application is in acous-

tical analysis of air flow and industrial HVAC systems with large cross sections. Such

systems often have higher order mode propagation in them. It is often impractical to add

enough damping to an air flow system for the desired acoustic noise reduction. Proper
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design of acoustical filters would let the acoustical properties of the ducts themselves

reduce the propagated noise. Standard plane wave analysis is an insufficient tool for

higher frequency filter design. As active noise control (ANC) strives to make inroads

into industry, the bandwidth of such systems will have to be increased to control sound

above the cut-off frequency of the ducting system. Proper analysis of modal scattering

is essential in the design of an effective higher frequency ANC system. A less obvious

application is the acoustical monitoring of mechanical systems, where often the acous-

tical signal that is desired to be measured is a high frequency signal traveling though a

ducting system (e.g. turbofans, fluid piping systems). A knowledge of how the ducting

system modifies the acoustic spectrum is essential in acoustical monitoring.

1.3 Thesis Outline

Chapter 2 of the thesis reviews some of the mathematics and physics of duct

acoustics and modal analysis. In particular, the chapter discusses the equations governing

wave propagation in ducts and discusses their solution in modal form. It develops matrix

forms of those same solutions. It also reviews the use of generalized scattering parameters

and Green’s functions in the solution of acoustic waveguide problems.

Chapter 3 of the thesis derives the scattering parameters for step (size) discon-

tinuity. Examples of symmetric and asymmetric steps in a rectangular waveguide are

given.

Chapter 4 of the thesis derives the scattering parameters for multi-port junctions.

Right angle bends and T junctions in rectangular waveguides are used as examples. The
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analytical results for the right angle bend are compared with the experimental results fo

Sheperd and Cabelli [59].

Chapter 5 of the thesis derives expressions for the radiation impedance and re-

flection coefficients for a duct terminating in an infinite baffle. Numerical results are

obtained for a rectangular waveguide. Expressions for the radiated power and directiv-

ity of the radiation from the duct termination are developed.

Chapter 6 of the thesis discusses the experimental methods used to investigate

radiation from the end of a baffled rectangular duct.

Chapter 7 states some conclusions which can be drawn from the work and gives

suggestions for future research.
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Chapter 2

Math and Physics Review

This chapter of the thesis will briefly review some of the basic mathematics and

physics of duct acoustics and scattering parameters. In particular, it will cover modal

decomposition, the edge condition, scattering parameters, matrix notation and Green’s

functions.

2.1 Modal Decomposition

A linear fluid pressure perturbation p′(x, y, z) inside an acoustic waveguide satis-

fies the linear acoustic pressure wave equation

(∇2 − 1
c2

∂

∂t2
)p′(x, y, z, t) = 0 (2.1)

where t represents time and c represents the acoustic speed of sound in the medium. The

fluid pressure perturbation, p′, and the particle velocity perturbation, u′, are related by

the linearized momentum equation, also known as Euler’s equation

ρ
∂~u′(x, y, z, t)

∂t
= −∇p′(x, y, z, t) (2.2)

where ρ is the ambient density of the medium.
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The linearized wave and Euler’s equation can be Fourier transformed in time to

yield the constant frequency versions of the equations.

The forward Fourier time transform is defined as

F (x, y, z, ω) =
∞∫
−∞

f(x, y, z, t)e−jwtdt. (2.3)

The inverse Fourier time transform is defined as

f(x, y, z, t) =
1
2π

∞∫
−∞

F (x, y, z, ω)ejwtdω. (2.4)

Denoting the Fourier Transform of the linear pressure perturbation p′ as p, the

Fourier transformed wave equation (also known as the Helmholtz equation) can be writ-

ten as

(∇2 + k2)p(x, y, z, ω) = 0 (2.5)

where the wavenumber k = ω/c.

Denoting the Fourier transform of the linear velocity perturbation ~u′ as ~u, the the

Fourier transformed form of Euler equation is

~u(x, y, z, ω) =
j

kρc
∇p(x, y, z, ω). (2.6)

The solution to the differential equation 2.5 depends upon the boundary condi-

tions. If the fluid is confined to a rectangular duct with rigid walls at x = 0, x = a,
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y = 0, and y = b, the normal velocity is zero on each wall. The boundary conditions are

then

∂

∂x
p
∣∣∣
x=0

=
∂

∂x
p
∣∣∣
x=a

=
∂

∂y
p
∣∣∣
y=0

=
∂

∂y
p
∣∣∣
y=b

= 0. (2.7)

The pressure can be expressed as an expansion of the eigenfunctions of the partial

differential equation. The eigenfunctions are called the modes of the system, and the

eigenfunction expansion is called the modal solution.

In the case of a duct constrained in the x and y direction the modal solution for

the pressure is

p(x, y, z) =
∑
mx

∑
my

(Amxmye
−γmxmy z + Bmxmye

γmxmy z)ψmxmy(x, y) (2.8)

where ψmxmy is the eigenfunction (also known as the duct mode) and the propagation

constant γmxmy =
√

χ2
mxmy − k2 where χmxmy is the eigenvalue associated with ψmxmy .

Because the modes are the eigenfunctions of a self-adjoint differential equation,

they are real and orthogonal [31, 43, 69]. When the modes are properly normalized, the

orthogonality integral takes the form

∫∫
S

ψmxmy(x, y)ψnxny(x, y)dS = δmxnxδmyny (2.9)
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where S is the cross sectional area of the duct and δmn is the Kronecker delta defined by

δmn =


1 m = n

0 m 6= n

. (2.10)

The coefficients Amxmy and Bmxmy in equation 2.8 are called the modal ampli-

tudes. Amxmy is the amplitude of the waves traveling in the +ẑ direction, while Bmxmy

is the amplitude of the waves traveling in the −ẑ direction.

ψmxmy(x, y) are the modes of the duct. They represent standing waves that exist

in the x̂ and ŷ directions of the duct.

For each mx,my there is a frequency at which γmxmy is zero. That frequency is

called the cut-off frequency. Below the cut-off frequency the mode is called evanescent

because γmxmy is real and the mode no longer propagates, but decays exponentially.

The propagation constant γmxmy is used instead of the modal wavenumber kmxmy =√
k2 − χ2

mxmy because using this notation ensures that evanescent waves are represented

with decaying amplitude. To ensure that evanescent modes are represented with decaying

amplitude, one must take the negative root of k2−χ2
mxmy when k2 < χ2

mxmy , something

which is not easily implemented when solving the propagation equations numerically.

For a rectangular duct of sides a and b the normalized mode ψmxmy is given by

ψmx,my(x, y) =
cos(mxπa x) cos(myπb y)√

abΛmxΛmy
(2.11)
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where the integration constant Λmx is given by

Λmx =


1 mx = 0

1
2 mx > 0

. (2.12)

For the same duct the propagation number is given by

γmxmy =
√

(
mxπ

a
)2 + (

myπ

b
)2 − k2. (2.13)

Because nearly all the summations in this thesis will be double or triple summa-

tions (for the x, y, and z modes), a new terminology will be used. Capital letters will be

used to denote summation pairs or triplets. For example, M refers to mxmy or mxmymz

and N to nxny or nxnynz.

With the new summation notation equations 2.8 through 2.13 become

p(x, y, z) =
∑
M

(AMe−γMz + BMeγM z)ψM (x, y) (2.14)

ψM (x, y) =
cos(mxπa x) cos(myπb y)√

abΛmxΛmy
(2.15)

and

γM =
√

(
mxπ

a
)2 + (

myπ

b
)2 − k2. (2.16)

The axial velocity, uz, in the duct can be determined using Euler’s equation.

Application of Euler’s equation to equation 2.14 yields
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uz(x, y, z) =
∑
M

YM(AMe−γM z −BMeγM z)ψM (x, y) (2.17)

where the specific modal admittance YM is given by

YM =
−jγM
kρc

. (2.18)

The specific modal admittance is the ratio of the acoustic velocity to the acoustic

pressure for a particular mode propagating in one direction in an infinite duct.

2.2 Matrix Notation

Many of the modal summations can be more simply represented as matrix mul-

tiplications. With a more simple representation the physics of the problem should be

easier to see. In addition, the matrix representation is easily coded when using a higher

level language like MATLAB.

First, a number of vectors and matrices must be defined. Let

Ā =


A0

A1

...

 B̄ =


B0

B1

...

 ψ̄ =


ψ0(x, y)

ψ1(x, y)

...

 Ȳ =


Y0 0 · · ·

0 Y1 · · ·
...

...
. . .

 (2.19)

φ̄− =


e−γ0z 0 · · ·

0 e−γ1z · · ·
...

...
. . .

 φ̄+ =


eγ0z 0 · · ·

0 eγ1z · · ·
...

...
. . .

 . (2.20)
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With these definitions, and noting that T denotes the transpose operation, equa-

tion 2.14 can be rewritten

p(x, y, z) = ψ̄T φ̄−Ā + ψ̄T φ̄+B̄ (2.21)

and equation 2.17 can be rewritten

uz(x, y, z) = ψ̄T Ȳ φ̄−Ā− ψ̄T Ȳ φ̄+B̄. (2.22)

2.3 Generalized Scattering Parameters

When a propagating mode meets a discontinuity, part of it is reflected and part of

it is transmitted. The magnitude and phase of the reflected and transmitted modes can

be calculated if one knows the reflection and transmission coefficients. If the discontinuity

is a multiple port junction, there are a number of reflection and transmission coefficients.

The generalized relationships between the incident and reflected modes at the junction

are called the scattering parameters. The linear relationships can often be written in

matrix form in which case the matrix is called the scattering matrix [10, 11, 27, 28, 46]

Consider an N port junction as shown in figure 2.1 . If a mode in section i is inci-

dent on the junction, many different modes may be reflected in section i and transmitted

to the other sections. The ratio of the magnitude of the reflected or transmitted mode

Q in section l to the incident mode M in section i is SliQM . Thus, between a particular
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4

1

2

3Junction
Multiport

Fig. 2.1. A general N port junction

incident and reflected or transmitted mode

Bl
Q = SliQMAi

M . (2.23)

By defining a matrix

S̄li =


Sli00 Sli01 · · ·

Sli10 Sli11 · · ·
...

...
. . .

 (2.24)

one can write an equation which relates all the incident modes to all the reflected and

transmitted modes. Defining Āi and B̄i as the incident and reflected modal amplitude
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vectors in the ith section this equation is



B̄1

B̄2

...

B̄N


=



S̄11 S̄12 · · · S̄1N

S̄21 S̄22 · · · S̄2N

...
...

. . .
...

S̄N1 S̄N2 · · · S̄NN





Ā1

Ā2

...

ĀN


. (2.25)

2.4 Edge Condition

When doing numerical computations using modal analysis, the infinite sums and

infinite dimension matrices developed earlier must be truncated to a finite size. When

working with modal expansions in two connected regions one must be very careful about

the number of modes which are used in each region. Early work with electromagnetic

waves showed a phenomenon known as relative convergence, whereby the solution con-

verges to different values depending upon how the modal decomposition was truncated.

By changing the ratio of number of modes in each region, different solutions were ob-

tained.

It has been found that relative convergence is related to the violation of energy

relations at the edge of a discontinuity [28, 41]. By imposing conservation of energy

at the boundary, specific ratios of the number of modes required in each region can

be developed. For regions of similar geometry (i.e circular to circular, rectangular to

rectangular) Mittra and Lee found that the ratio of number of modes was the same as

the ratio of the characteristic sizes. For example, when dealing with two circular ducts

with a radius ratio of 2:1 the number of modes must be 2:1.
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2.5 Green’s Functions

Solving the wave equation with finite sized sources can sometimes be a daunting

task. One of the more powerful techniques for solving boundary value problems like those

posed by duct acoustics is the use of Green’s functions [2, 12, 13, 31, 43, 44, 50, 69]. The

use of Green’s functions will be essential for determining reflection and transmission at

junctions and reflection and radiation from the end of the duct.

A Green’s function G(~x| ~x0) for the Helmholtz equation satisfies the inhomoge-

neous differential equation

(∇2 + k2)G(~x| ~x0) = −δ(~x− ~x0). (2.26)

In acoustics, the Green’s function G(~x| ~x0) describes the propagation of radiation

from a point source at ~x0 to the point ~x. The pressure at ~x radiated from a vibrating

region of space S0 propagating through a region with a Green’s function G(~x| ~x0) can be

determined using the Kirchoff-Helmholtz integral theorem [30, 44, 50] which states

p(~x) = −
∫∫
S0

[G(~x| ~x0)∇p( ~x0)− p( ~x0)∇G(~x| ~x0)] · ~ndS0 (2.27)

where ~n is the surface normal and S0 is the radiating surface area.

For a point source in free space the Green’s function can be shown to be [44, 50]

G(~x| ~x0) =
ejkr

4πr
(2.28)
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where r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.

If the point source is above a rigid plane the particle velocity at the rigid plane

must be zero. A new Green’s function can be developed through the use of image sources

which satisfies this boundary condition. If the source is located on the rigid plane (not

just above) at z0 = 0 a suitable Green’s function is [44, 50]

G(~x| ~x0) =
ejkr

2πr
(2.29)

where r =
√

(x− x0)2 + (y − y0)2 + z2.

This Green’s function has the property that ∇g(~x| ~x0) · ẑ = 0 on the plane z = 0.

Thus when equation 2.29 is used, equation 2.27 reduces to

p(~x) = jkρc

∫∫
S0

uz(S0)G(~x| ~x0)dS0. (2.30)

This equation is known as the Rayleigh Integral. It is an indispensable equation

for determining the radiation from a planar region in an infinite baffle.

If the source is inside an enclosure instead of in free space the Green’s function

can be found as an expansion of modes of the enclosure [44, 50]

G(~x| ~x0) =
∑
mx

∑
my

∑
mz

φmxmymz (~x)φmxmymz( ~x0)
K2
mxmymz − k2

=
∑
M

φM (~x)φM ( ~x0)
K2
M − k2

(2.31)
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For a rigid walled parallelepiped with sides x = Lx, y = Ly, z = Lz the modes

φM are given by

φM (~x) = φmxmymz(~x) =
cos(mxπLx

x) cos(myπLy
y) cos(mzπLz z)√

LxLyLzΛmxΛmyΛmz
. (2.32)

The eigenvalue KM is given by

KM = Kmxmymz =
√

(
mxπ

Lx
)2 + (

myπ

Ly
)2 + (

mzπ

Lz
)2. (2.33)

For an enclosure, the Green’s function has the property that ∇G · ~n = 0 on the

walls of the enclosure. If the only acoustic source is the normal surface velocity of the

enclosure, the pressure anywhere within the enclosure is given by

p(~x) = jkρc

∫∫
S0

G(~x| ~x0)un(S0)dS0 (2.34)

where S0 is the surface of the enclosure.
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Chapter 3

Modal Scattering at Step Discontinuities

Two of the discontinuities present in many ducting systems are constrictions and

expansions - changes in the area of the duct. This is known in the microwave field as a

step discontinuity. Step discontinuities are essential parts of acoustical filter design.

This chapter of the thesis will present a thorough analysis of the reflection and

transmission of different modes at a step discontinuity. Using the formalism of general-

ized scattering parameters, both the constriction and expansion problems can be solved

at the same time.

3.1 General Step Discontinuity Theory

A general step discontinuity is shown in figure 3.1. Consider a change of size in

an infinite duct at z = 0. The main duct, in region 1, has a cross sectional area S1. The

smaller duct, in region 2, has a cross sectional area S1. The area at z = 0 of S1 outside

S2 will be denoted S3. In region 1 modes A1
M are incident on the junction and B1

M are

traveling away from it. In region 2 modes A2
M are incident on the junction and B2

M are

traveling away from it.

Using the notation of chapter 2, the pressure in region 1 and 2 can be written

p1(x, y, z) =
∑
M

(A1
Me−γ

1
M z + B1

Meγ
1
M z)ψ1

M (x, y) (3.1)
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S1
S2

Region 1 Region 2

Fig. 3.1. Geometry of the Stepped Duct in Example 3.4.1.

and

p2(x, y, z) =
∑
M

(A2
Meγ

2
M z + B2

Me−γ
2
Mz)ψ2

M (x, y). (3.2)

The modes traveling away from the junction, B1
M and B2

M , are made up of modes

reflected and transmitted the modes that were incident on the junction. Thus they can

be rewritten as

B1
M =

∑
N

S11
MNA1

N + S12
MNA2

N (3.3)

and

B2
M =

∑
N

S22
MNA2

N + S21
MNA1

N . (3.4)

S11
MN and S22

MN are the reflection coefficients in regions 1 and 2 between incident

mode N and reflected mode M while S12
MN and S21

MN are the transmission coefficients

from region 2 mode N to region 1 mode M and region 1 mode N to region 2 mode M,
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respectively. By solving for S11
MN and S21

MN the reflection and transmission coefficients for

a constriction are found. By solving for S22
MN and S12

MN the reflection and transmission

coefficients for an expansion are found.

Using equations 3.3 and 3.4, equation 3.1 and 3.2 can be rewritten as

p1(x, y, z) =
∑
M

(A1
Me−γ

1
M z +

∑
N

[S11
MNA1

N + S12
MNA2

N ]eγ
2
M z)ψ1

M (x, y) (3.5)

and

p2(x, y, z) =
∑
M

(A2
Meγ

2
M z +

∑
N

[S22
MNA2

N + S21
MNA1

N ]e−γ
2
M z)ψ2

M (x, y). (3.6)

Using Euler’s equation, the velocity in the +ẑ direction is found to be

u1
z(x, y, z) =

∑
M

Y 1
M (A1

Me−γ
1
M z −

∑
N

[S11
MNA1

N + S12
MNA2

N ]eγ
1
M z)ψ1

M (x, y) (3.7)

and

u2
z(x, y, z) =

∑
M

Y 2
M (−A2

Meγ
2
M z +

∑
N

[S22
MNA2

N + S21
MNA1

N ]e−γ
2
M z)ψ2

M (x, y). (3.8)

At z = 0 the pressure and normal velocity are continuous across S2 so

p1(x, y) =
∑
M

(A1
M +

∑
N

[S11
MNA1

N + S12
MNA2

N ])ψ1
M (x, y)

= p2(x, y) =
∑
M

(A2
M +

∑
N

[S22
MNA2

N + S21
MNA1

N ])ψ2
M (x, y) (3.9)
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and

u1
z(x, y) =

∑
M

Y 1
M (A1

M −
∑
N

[S11
MNA1

N + S12
MNA2

N ])ψ1
M (x, y)

= u2
z(x, y) =

∑
M

Y 2
M (−A2

M +
∑
N

[S22
MNA2

N + S21
MNA1

N ])ψ2
M (x, y). (3.10)

If equation 3.9 is multiplied by ψ2
R and integrated across the interface (S2), the

sum on the right hand side will be eliminated because of the orthogonality of the modes

in region 2. Equation 3.9 then becomes

∑
M

HRM (A1
M +

∑
N

[S11
MNA1

N + S12
MNA2

N ]) = A2
R +

∑
N

[S22
RNA2

N + S21
RNA1

N ] (3.11)

where the coupling constant HRM is defined as

HRM =

∫∫
S2

ψ2
R(x, y)ψ1

M (x, y)dxdy∫∫
S2

(ψ2
R(x, y))2dxdy

=
∫∫
S2

ψ2
R(x, y)ψ1

M (x, y)dxdy. (3.12)

The normal velocity at z = 0 over the area S3 (part of S1 outside of S2) is zero.

From this constraint it follows that for any function f(x, y)

∫∫
S2

u1
z(x, y, 0)f(x, y)dxdy =

∫∫
S1

u1
z(x, y, 0)f(x, y)dxdy. (3.13)

If equation 3.10 is multiplied by ψ1
R and integrated across the interfaces (S2) and

if the integration over the left side of equation 3.10 is extended using equation 3.13, the
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sum on the left hand side will be eliminated because of the orthogonality of the modes

in region 1. Thus equation 3.10 reduces to

Y 1
M(A1

R−
∑
N

[S11
RNA1

N+S12
RNA2

N ]) =
∑
M

HMRY 2
M (−A2

M+
∑
N

[S22
MNA2

N+S21
MNA1

N ]). (3.14)

These equations can be rewritten using the matrix notation of chapter 2. First

however, a few new matrices must be defined; let the scattering matrix S̄ and the coupling

matrix H̄ be defined as

S̄µν =


Sµν00 Sµν01 · · ·

Sµν10 Sµν11 · · ·
...

...
. . .

 H̄ =


H00 H01 · · ·

H10 H11 · · ·
...

...
. . .

 . (3.15)

With these definitions equations 3.11 and 3.14 become

H̄(Ī + S̄11)Ā1 + H̄S̄12Ā2 = (Ī + S̄22)Ā2 + S̄21Ā1 (3.16)

and

Ȳ 1(Ī − S̄11)Ā1 − Ȳ 1S̄12Ā2 = H̄T Ȳ 2(S̄22 − Ī)Ā2 + H̄T Ȳ 2S̄21Ā1. (3.17)

These equations hold for arbitrary Ā1 and Ā2. By setting Ā2 = 0 one finds

S̄11 = (Ȳ 1 + H̄T Ȳ 2H̄)−1(Ȳ 1 − H̄T Ȳ 2H̄) (3.18)
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and

S̄21 = H̄(Ī + S̄11). (3.19)

By setting Ā1 = 0 and defining the generalized inverse of H̄ as Ḡ = (H̄T H̄)−1H̄T

one finds

S̄22 = 2(Ȳ 2 + ḠT Ȳ 1Ḡ)−1(Ȳ 2 − ḠT Ȳ 1Ḡ) (3.20)

and

S̄12 = Ḡ(Ī + S̄22). (3.21)

Equations 3.18 and 3.20 have a very familiar form. The equations for S11 and S22

are the same form as that for reflection of a plane wave in a medium with a characteristic

admittance ya incident on a medium with an admittance yb, i.e. z = (ya− yb)/(ya + yb).

Thus one can identify H̄T Ȳ 2H̄ as the equivalent impedance matrix seen from region 1

looking toward the discontinuity and ḠT Ȳ 1Ḡ as the equivalent impedance as seen from

region 2 looking toward the discontinuity. Since Ȳ 1 and Ȳ 2 are diagonal matrices one

can also see that all the mutual modal coupling is contained in the H̄ and H̄T matrices.

3.2 Numerical Considerations

In numerically solving for S̄µν , the summations (and hence the matrix size) must

be finite. As indicated in chapter 2, in order for the truncated solution to converge toward

the exact value, the number of modes in each region is not arbitrary - a certain ratio is

required to achieve convergence. As an example, consider region 1 to be a rectangular

duct of dimensions a1, b1 and region 2 to be a rectangular duct of dimensions a2, b2. If
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N1x and N1y denote the number of modes in the x direction and y direction of region

1, and N2x and N2y the number of modes in the x and y direction in region 2 the

ratios are N1x/N2x = a1/a2 and N1y/N2y = b1/b2. Thus the total number of modes is

N1 = N1xN1y in region 1 and N2 = N2xN2y in region 2.

In addition, there are alternate forms of equations 3.18 to 3.20. The form used

above was chosen because it helps to show the physics of the problem by drawing analo-

gies to known situations. However, it requires computing several N1xN1 matrix inver-

sions, one being a generalized inverse which can often be difficult. Defining Z̄1
c as (Ȳ 1)−1,

equations 3.18 to 3.20 can be rewritten as

S̄11 = Ī − Z̄1
c H̄

T Ȳ 2S̄21, (3.22)

S̄21 = 2(H̄Z̄1
c H̄

T Ȳ 2 + Ī)−1H̄, (3.23)

S̄22 = (H̄Z̄1
c H̄

T Ȳ 2 + Ī)−1(H̄Z̄1
c H̄Ȳ 2 − Ī), (3.24)

and

S̄12 = Z̄1
c H̄

T (Ī − S̄22). (3.25)

In this form only one inversion of an N2xN2 matrix is required (recall that

N2 < N1 and note that Z̄c isn’t counted because Ȳ is diagonal in inversion is simple).

The computational workload has been extremely reduced by eliminating several time

consuming matrix inversions and since the matrix being inverted is smaller, accuracy

should be increased - especially if the matrices being inverted are close to singular.
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Fig. 3.2. Geometry of a General Rectangular Stepped Duct

3.3 Coupling Matrix HRM for a Rectangular Duct

The term HRM is an integral which, for a rectangular duct, is straightforward to

do analytically. However, it is probably easiest to factor HRM into x and y terms first.

Consider region 1 to be a duct of size a1, b1 and region 2 to be a duct of size a2, b2 offset

ε, δ from region 1 as shown in figure 3.2. Equation 3.12 becomes

HRM = HXrxmxHY rymy (3.26)

where

HXrxmx =
1√

a1a2ΛmxΛry

∫ ε+a2

ε
cos(

mxπ

a1
x) cos(

rxπ

a2
(x− ε))dx (3.27)
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and

HY rymy =
1√

b1b2ΛmyΛry

∫ δ+b2

δ
cos(

myπ

b1
y) cos(

ryπ

b2
(y − δ))dy. (3.28)

In general, the integrals yield

HXrxmx =
a2
√

a1a2 mx

π
√

ΛmxΛrx

(−1)rx sin(mxπa1
(a2 + ε))− sin(mxπa1

ε)
(mxa2)2 − (rxa1)2

(3.29)

HY rymy =
b2

√
b1b2 my

π
√

ΛmxΛrx

(−1)ry sin(myπb1 (b2 + δ)) − sin(myπb1 δ)
(myb2)2 − (ryb1)2

. (3.30)

When mx = rxa1/a2 the first integral yields

HXrxmx =
√

a1

a2
cos(

mxπ

a1
ε). (3.31)

When my = ryb1/b2 the second integral yields

HY rymy =

√
b2

b1
cos(

myπ

b1
δ). (3.32)

It should be noted that equation 3.31 holds even when mx = 0 and 3.32 holds

even when my = 0.

When mx = 0 but rx 6= 0 or my = 0 but ry 6= 0

HRM = 0. (3.33)
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3.4 Examples

To demonstrate applications of the theory, two examples will be developed. First

is an asymmetric duct. This duct is commonly used for example problems in microwave

theory [28, 41]. The second problem is a symmetric duct which is probably a more

common size change found in industrial ducting systems. It has also been investigated

by microwave waveguide researchers [56, 57].

3.4.1 An Asymmetric Stepped Duct

Consider a duct as shown in figure 3.3. At z = 0 the duct changes from a duct

with 0 < x < a to a duct with 0 < x < a/2. To simplify the calculation, only a

discontinuity in the x direction is considered. Since there is no discontinuity in the y

direction, all the y dependence and terms in the problem will drop out.

Figure 3.4 shows the magnitude of the pressure self reflection coefficients of an

asymmetric constriction. The magnitude of the plane wave coefficient, |S11
00 |, approaches

1/3 at low frequencies. That is the expected value obtained from the standard low

frequency analysis which can be used as a limiting check for the theory presented here.

The plane wave coefficient increase with frequency, reaching unity at ka = π, the cut-off

frequency of the first horizontal mode. At that frequency the magnitude of the first

mode self reflection coefficient, |S11
11 |, is also unity. Above the cut-off frequency of the

mode the first mode coefficient magnitude quickly drops to a small value. The reflection

coefficient of the second mode, |S11
22 |, is not unity at its cut-off frequency, but is about

1/3. Above the cut-off frequency it rises.
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Fig. 3.3. Geometry of the Asymmetric Stepped Duct in Example 3.4.1.

Figure 3.5 shows the phase of the self reflection coefficients of an asymmetric

constriction. The phase of the plane wave reflection coefficient is pretty close to π for all

frequencies. So, at the cut-off frequency of the first mode, when the magnitude is unity,

the constriction looks like a pressure release surface to the plane wave mode. The phase

of the first mode coefficient is zero at the cut-off frequency however, so at the cut-off

frequency of that mode, the constriction looks like a rigid termination. The phase of the

second mode coefficient is about π for all frequencies.

Figure 3.6 shows the magnitude of the pressure self reflection coefficients of an

asymmetric expansion. At low frequencies the magnitude of the plane wave reflection

coefficient, |S22
00 |, approaches 1/3, the value obtained from the standard low frequency

analysis. It rises to unity at the cut-off frequency of the first mode. The magnitude

of the first mode reflection coefficient, |S22
11 |, approaches 0.3 at its cut-off frequency and
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rises more above the cut-off frequency of the second mode. The magnitude of the second

mode reflection coefficient, |S22
22 |, stays about 0.15 until close to the cut-off frequency of

the third mode.

Figure 3.7 shows the phase of the pressure self reflection coefficients of an asym-

metric expansion. The phase of the plane wave reflection coefficient starts at π but drops

to zero at the cut-off frequency of the first mode. Since the magnitude is unity there, at

the cut-off frequency of the first mode, the expansion looks like a rigid termination to

the plane wave. Above the cut-off frequency of the first mode the phase stays close to

zero. The phase of the first mode reflection coefficient starts at zero, goes through π/2

at the cut-off frequency of the mode and goes through π at the cut-off frequency of the

second mode. The phase of the second mode reflection coefficient stays pretty close to

zero until close to the cut-off frequency of the third mode.

Figure 3.8 shows the magnitude of the pressure self transmission coefficients from

region 1 to region 2. The plane wave mode transmission and the first mode transmission

drops to zero at the cut-off frequency of the first mode. The transmission coefficient of

the second mode is zero at its cut-off frequency, rising at higher frequencies. So, at the

cut-off frequency of the first mode, there is little transmission.

Figure 3.9 shows the magnitude of the pressure self transmission coefficients from

region 2 to region 1. The plane wave mode transmission drops to zero at the cut-off

frequency of the first mode but then rises again. The first mode transmission coefficient

is well transmitted near its cut-off frequency, but the transmission drops to zero at the

cut-off frequency of the second mode.
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Figure 3.10 shows the magnitude of the mutual pressure reflection and transmis-

sion coefficients from the plane wave mode to the first mode. There is significant coupling

to the first mode from a plane wave mode incident from region 1 and region 2. All the

coefficients have local peaks near the cut-off frequency of the first mode. The mutual

reflection coefficient, S11
10 , is larger than unity, which at first might seem to be impossible,

but only the self reflection coefficients cannot exceed unity, mutual reflection coefficients

can exceed unity if the coefficient is for a plane wave mode to a higher order mode be-

cause the plane wave mode carries more energy than the higher order modes with the

same amplitude, thus the pressure coupling coefficient may be greater than unity but

the energy transfer coefficient will not be. With coupling coefficients approaching and

exceeding unity, it is easy to see that modal coupling is not negligible.

Figure 3.11 shows the magnitude of the mutual pressure reflection and trans-

mission coefficients from the first mode to the plane wave mode. The reflection and

transmission coefficients in region 1 go to zero at the cut-off frequency of the first mode.

The reflection and transmission coefficients in region 2 are largest at the cut-off frequency

of the first mode but they go to zero at the cut-off frequency of the second mode. There

is significant coupling from the first mode to the plane wave mode incident in region 2

near the cut-off frequency of the first mode and in region I above the cut-off frequency

of the first mode.

Figure 3.12 shows the magnitude of the mutual pressure reflection and transmis-

sion coefficients from the plane wave mode to the second mode. All the coefficients have

a local peak at the cut-off frequency of the first mode. Recall however, that the second
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mode can not yet propagate at that frequency. All the coefficients rise again at the

cut-off frequency of the third mode. The overall level is quite low however.

Figure 3.13 shows the magnitude of the mutual pressure reflection and transmis-

sion coefficients from the second mode to the plane wave mode. All the coefficients peak

at the cut-off frequency of the first mode, below the cut-off frequency of the second

mode. All the coefficients are zero at the cut-off frequency of the second mode. The only

significant peak is below the cut-off frequency of the second mode.

Figure 3.14 shows the magnitude of the mutual pressure reflection and transmis-

sion coefficients from the first mode to the second mode. Most of the coefficients are

zero at the cut-off frequency of the first mode. There is significant transmission of the

first mode in region 1 to the second mode in region 2.

Figure 3.15 shows the magnitude of the mutual pressure reflection and transmis-

sion coefficients from the second mode to the first mode. At the cutoff frequency of the

second mode the mutual reflection coefficient in region 1 is zero and remains a low value

for higher frequencies, while the transmission coefficient from region 2 to 1 approaches

unity and remains high for higher frequencies. One would expect high transmission from

mode 2 in region 1 to mode 1 in region 2 because the wavelengths of both modes are the

same.

Some simple conclusions about the asymmetric step can be made from observation

of the plots. First, at the cut-off frequency of the first mode, a constriction looks like

a pressure release surface for the plane wave mode and rigid wall to the first mode. At

that same frequency the expansion looks like a rigid wall to the plane wave mode. At

the cutoff frequency of the first mode there major coupling from the plane wave mode
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in region 1 and 2 to the first mode in region 1. At higher frequencies the first mode

in region 1 couples well to the plane wave mode in regions 1 and 2. By comparing the

magnitudes of the mutual reflection coefficients to the magnitudes of the self reflection

coefficients, it is clear that modal coupling is significant and important.
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Fig. 3.4. Magnitude of the pressure self reflection coefficients in region 1, S11
mm, for

incident modes m = 0, 1, 2, with a1/a2 = 2 and ε = 0.
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Fig. 3.5. Phase of the pressure self reflection coefficients in region 1, S11
mm, for incident

modes m = 0, 1, 2, with a1/a2 = 2 and ε = 0.
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Fig. 3.6. Magnitude of the pressure self reflection coefficients in region 2, S22
mm, for

incident modes m = 0, 1, 2, with a1/a2 = 2 and ε = 0.
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Fig. 3.7. Phase of the pressure self reflection coefficients in region 2, S22
mm, for incident

modes m = 0, 1, 2, with a1/a2 = 2 and ε = 0.
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Fig. 3.8. Magnitude of the pressure self transmission coefficient of region 1 to region 2,
S21
mm, for incident modes m = 0, 1, 2, with a1/a2 = 2 and ε = 0.
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Fig. 3.9. Magnitude of the pressure self transmission coefficient of region 2 to region 1,
S12
mm, for incident modes m = 0, 1, 2, with a1/a2 = 2 and ε = 0.
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Fig. 3.10. Magnitude of the pressure mutual reflection and transmission coefficients for
incident mode 0 in region ν to mode 1 in region µ, Sµν10 , with a1/a2 = 2 and ε = 0.
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Fig. 3.11. Magnitude of the pressure mutual reflection and transmission coefficients for
incident mode 1 in region ν to mode 0 in region µ, Sµν01 , with a1/a2 = 2 and ε = 0.
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Fig. 3.12. Magnitude of the pressure mutual reflection and transmission coefficients for
incident mode 0 in region ν to mode 2 in region µ, Sµν20 , with a1/a2 = 2 and ε = 0.
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Fig. 3.13. Magnitude of the pressure mutual reflection and transmission coefficients for
incident mode 2 in region ν to mode 0 in region µ, Sµν02 , with a1/a2 = 2 and ε = 0.
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Fig. 3.14. Magnitude of the pressure mutual reflection and transmission coefficients for
incident mode 1 in region ν to mode 2 in region µ, Sµν21 , with a1/a2 = 2 and ε = 0.
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Fig. 3.15. Magnitude of the mutual pressure reflection and transmission coefficients for
incident mode 2 in region ν to mode 1 in region µ, Sµν12 , with a1/a2 = 2 and ε = 0.
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Fig. 3.16. Geometry of the Symmetric Stepped Duct in Example 3.4.2.

3.4.2 The Symmetric Stepped Duct

As a second example, consider a duct as shown in figure 3.16. This duct is

symmetric as the discontinuity is about the center line of the duct. To simplify the

calculation, only a discontinuity in the x direction is considered. Since there is no y

discontinuity, all the y dependence and terms in the problem will drop out. Because of

the symmetry of the problem, there is also no coupling between even and odd numbered

modes.

Figure 3.17 shows the magnitude of the pressure self reflection coefficients of

a symmetric constriction. The magnitude of the plane wave self reflection coefficient

approaches the expected 1/3 at low frequencies. The plane wave coefficient increases

with frequency, reaching unity at the cut-off frequency of the second horizontal mode.

The magnitude of the self reflection coefficient of the first mode is unity for all frequencies
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between the cut-off frequencies of the first mode and the second mode. The magnitude of

self reflection coefficient of the second mode is unity at its cut-off frequency, but quickly

drops above it.

Figure 3.18 shows the phase of the pressure self reflection coefficients of a symmet-

ric constriction. The phase of plane wave coefficient is about π for all frequencies. Since

the magnitude is unity at the cutoff frequency of the first mode, the constriction looks

like a rigid wall to the plane wave mode, just like for the asymmetric duct. The phase

of the first mode reflection coefficient is zero at its cut-off frequency so the constriction

looks like a rigid wall at that frequency. The phase for the first mode coefficient is π at

the cutoff of the second mode, so at that frequency the constriction looks like a pressure

release surface. The phase of second mode coefficient is zero at the cut-off frequency of

the second mode, so the constriction looks like a rigid wall to the second mode at the

cut-off frequency.

Figure 3.19 shows the magnitude of the pressure self reflection coefficients of a

symmetric expansion. The magnitude of the plane wave reflection coefficient approaches

the expected 1/3 at low frequencies. The magnitude of plane wave coefficient increases

with frequency, reaching unity at the cut-off frequency of the second horizontal mode.

The magnitude of the first mode reflection coefficient approaches unity at the cut-off

frequency of the first and second modes. The magnitude of reflection coefficient of the

second mode is small for all frequencies.

Figure 3.20 shows the phase of the pressure self reflection coefficients of a sym-

metric expansion. The phase of plane wave coefficient starts at π and approaches zero

at the cut-off frequency of the second mode. So the expansion looks like a rigid wall
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at the cut-off frequency of the second mode. The phase of the first mode coefficient is

zero at its cut-off frequency so the expansion looks like a rigid wall at that frequency.

The phase for the first mode coefficient is π at the cutoff of the second mode, so at that

frequency the expansion looks like a pressure release surface. The phase of second mode

approaches π/2 at the cut-off frequency of the second mode.

Figure 3.22 shows the magnitude of the pressure self transmission coefficients

from region 2 to region 1. The plane wave mode has high transmission until the cut-off

frequency of the second mode. The first mode is well transmitted at its cut-off frequency

but not at all at the cut-off frequency of the second mode. The second mode transmits

well at its cut-off frequency, but the transmission drops at higher frequencies.

Figure 3.21 shows the magnitude of the pressure self transmission coefficients from

region 1 to region 2. Again, the plane wave mode is well transmitted until the cut-off

frequency of the second mode. The first mode is not transmitted at its cut-off frequency,

but has very high transmission at the cut-off frequency of the second mode. Since the

magnitude of first mode self reflection coefficient in region 1 was unity between the cut-

off of the first and second modes, the change in the transmission coefficient is indicative

of the change in phase of the reflection coefficient. At the cut-off frequency of the second

mode the plane wave and second mode do not transmit well.

Figure 3.23 shows the mutual coupling coefficients from plane wave mode to the

second mode. The plot shows that there is very significant coupling for reflected and

transmitted second modes for a plane wave incident from region 1, but little coupling

for a plane wave incident from region 2.
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Figure 3.24 shows the mutual coupling coefficients from the second mode to the

plane wave mode. The plot shows that at the cut-off frequency of the second mode

there is significant coupling for reflected and transmitted modes for a mode incident

from region 2. At higher frequencies there is significant coupling for modes incident in

region 1.

Some simple conclusions about the symmetric step can be made from observation

of the plots. First, at the cut-off frequency of the first mode, a constriction looks like a

pressure release surface for the plane wave mode and rigid wall to the first mode and the

second mode. At that same frequency the expansion looks like a rigid wall to the plane

wave mode and a pressure release surface to the first mode. Again, there is significant

modal coupling above the cut-off frequency of the first mode, with coupling coefficients

greater than unity at some frequencies.
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Fig. 3.17. Magnitude of the pressure self reflection coefficients in region 1, S11
mm, for

incident modes m = 0, 1, 2 with a1/a2 = 2 and ε = (a1 − a2)/4.
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Fig. 3.18. Phase of the pressure self reflection coefficients in region 1, S11
mm, for incident

modes m = 0, 1, 2 with a1/a2 = 2 and ε = (a1 − a2)/4.
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Fig. 3.19. Magnitude of the pressure self reflection coefficients in region 2, S22
mm, for

incident modes m = 0, 1, 2 with a1/a2 = 2 and ε = (a1 − a2)/4.
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Fig. 3.20. Phase of the pressure self reflection coefficients in region 2, S22
mm, for incident

modes m = 0, 1, 2 with a1/a2 = 2 and ε = (a1 − a2)/4.
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Fig. 3.21. Magnitude of the pressure self transmission coefficient of region 1 to region
2, S21

mm, for incident modes m = 0, 1, 2, with a1/a2 = 2 and ε = (a1 − a2)/4.
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Fig. 3.22. Magnitude of the pressure self transmission coefficient of region 2 to region
1, S12

mm, for incident modes m = 0, 1, 2, with a1/a2 = 2 and ε = (a1 − a2)/4.
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Fig. 3.23. Magnitude of the pressure mutual reflection and transmission coefficients
for incident mode 0 in region ν to mode 2 in region µ, Sµν20 , with a1/a2 = 2 and ε =
(a1 − a2)/4.
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Chapter 4

Modal Scattering at Junctions

Just as the step discontinuity was an important part of acoustical networks and

filters, so is the junction. A junction is a general region to which two or more ducts are

connected. A duct bend can be described as a sort of junction with two ports. Expansion

and constriction chambers could also be described as junctions with two ports. This

chapter will derive a basic theory for determining reflection and transmission between

the different ports of a junction.

4.1 General Junction Theory

Consider a multi-port junction as shown in figure 4.1. Each port is a duct, each

with its own propagating modes. When a given mode in one duct is incident upon the

junction, part of the mode is reflected back into that same mode in that duct, part is

reflected back into other modes in that duct, and part is transmitted into various modes

in other ducts.

If the Green’s function for the junction region is known, an integral relation

between the pressure and the velocity at the duct-junction interface can be developed.

The pressure and velocity can be written in terms of the modes and hence an integral

relation between the modes can be established.
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Fig. 4.1. Geometry of a Multi-port Junction

In particular, consider an N port junction in which a Green’s function GJ for

the junction region is known. In addition assume that on the surface of the interior

∂GJ/∂n = 0. The pressure at some position ~x inside or on the interior surface of the

junction is given by

p(~x) = jkρc

∫∫
S0

GJ(~x| ~x0)~u( ~x0) · ~ndS0 (4.1)

where ~n is the surface normal and S0 is the interior surface of the junction.

If the walls of the junction are rigid the velocity at the junction surface is only

nonzero at the other ports and the pressure at the lth duct/junction interface is given

by

pl(~xl) = jkρc
∑
i

∫∫
Si

GJ(~xl|~xi)~u(~xi) · ~ndSi (4.2)

where Si is the area of the ith duct.
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The pressure in each duct can be expanded into a modal series of the form

pl(xl, yl, vl) =
∑
M

(Al
Me−γ

l
M zl + Bl

Meγ
l
M zl)ψlM (xl, yl) (4.3)

where xl, yl, and zl are locally defined coordinates such that the interface between the

duct and junction is defined as zl = 0 and the direction of +zl is towards the junction.

Given pl as above, the normal velocity ulz can be found, using Euler’s equation,

to be

ulz =
∑
M

Y l
M (Al

Me−γ
l
Mzl −Bl

Meγ
l
M zl)ψlM (xl, yl) (4.4)

where Y l
M is the characteristic modal admittance of the Mth mode in the lth port.

Using equations 4.3 and 4.4 in equation 4.2 results in the relation

∑
M

(Al
M + Bl

M )ψlM (xl, yl) = jkρc
∑
i

∑
M

Y i
M (Ai

M −Bi
M )

×
∫∫
Si

GJ (xl, yl|xi, yi)

∣∣∣∣∣∣∣ zl=0
zi=0

ψiM (xi, yi)dxidyi. (4.5)

Multiplying equation 4.5 by ψlR and integrating over Sl yields

Al
R + Bl

R =
∑
i

∑
M

Y i
M (Ai

M −Bi
M )Z li

RM (4.6)

where

Z li
RM = jkρc

∫∫
Sl

∫∫
Si

GJ (xl, yl|xi, yi)

∣∣∣∣∣∣∣ zl=0
zi=0
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×ψlR(xl, yl)ψiM (xi, yi)dxidyidxldyl. (4.7)

Z li
RM is the mutual modal impedance between port i mode M and port l mode

R.

Since impedance is the ratio of pressure to velocity, the reason for identifying

Z li
RM as a modal impedance is because the left hand side of equation 4.6 is the amplitude

of the pressure of the Rth mode in the lth port while the right hand size is the sum of

Z li
RM times the velocity of the Mth mode in the ith port.

Equation 4.6 has Y i
M multiplying Z li

RM . Since Y i
M is the characteristic modal

admittance of the Mth mode in port i, the multiplication is normalization of the mutual

modal impedance by the characteristic modal impedance of that port. Thus, it makes

sense to define the normalized modal impedance ηliRM as

ηliRM = Y i
MZ li

RM . (4.8)

In matrix form equation 4.6 becomes

Āl + B̄l = η̄li(Āi − B̄i). (4.9)

The reflected waves B̄l can be rewritten in terms of the incident waves and scat-

tering parameters in the form

B̄l =
∑
q

S̄lqĀq (4.10)
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and equation 4.9 becomes

Āl +
∑
q

S̄lqĀq = η̄li(Āi −
∑
q

S̄iqĀq). (4.11)

Defining the super matrices

Ā =


Ā0

Ā1

...

 Ȳ =


Ȳ 0

Ȳ 1

...

 S̄ =


S̄00 S̄01 · · ·

S̄10 S̄11 · · ·
...

...
. . .

 η̄ =


η̄00 η̄01 · · ·

η̄10 η̄11 · · ·
...

...
. . .

 (4.12)

equation 4.11 can be reduced to

(Ī + S̄)Ā = η̄(Ī − S̄)Ā (4.13)

from which the scattering matrix S̄ is found to be

S̄ = (η̄ + Ī)−1(η̄ − Ī). (4.14)

This form of the equation for the scattering matrix is the same as the normalized

form of the plane wave reflection coefficient at a planar change of impedance.

4.2 Examples
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4.2.1 A Right Angle Bend

Consider a right angle (90o) bend in a duct as show in figure 4.2. For this problem

there is no discontinuity in the y direction, hence there will be no scattering in the y

direction. Then there is no y dependence in the problem and the y components and

summations can be eliminated from the problem. Also, since most of the summations

have been reduced to single summations, standard summation notation will be used.

This problem is essentially a two port junction, with the junction being a square

of side a. The Green’s function for the junction is

GJ (x, z|x0, z0) =
∑
nx

∑
nz

cos(nxπa x) cos(nzπa z) cos(nxπa x0) cos(nzπa z0)
a2ΛnxΛny [(

nxπ
a

2) + (nzπa
2)− k2]

. (4.15)
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Since the junction is only two ports, it is probably easier to understand the prob-

lem by discussing the reflection and transmission coefficients rather than the scattering

coefficients. The scattering parameters from a port to itself will be called the reflection

coefficient R and the scattering parameter from a port to the other port will be called

the transmission coefficient T .

The locally defined coordinates are

x1 = x, z1 = z, x2 = z, z2 = x. (4.16)

To apply equation 4.14, η̄ must be computed, which means Zil
RM must be com-

puted. By symmetry Z12 = Z21 and Z11 = Z22 so only two terms need actually be

computed. Using equation 4.15, the equation for Z11
rm becomes

Z11
rm = jkρc

a∫
x=0

a∫
x0=0

∑
nx

∑
nz

cos(nxπa x) cos(nxπa x0) cos(mπa x) cos(rπa x0)
a3ΛnxΛnz

√
ΛmΛr[(nxπa )2 + (nzπa )2 − k2]

= jkρc δmr
∑
nz

1
aΛnz [(

mπ
a )2 + (nzπa )2 − k2]

= −jkρc

km
δrm cot(kma). (4.17)

The infinite sum over nz was evaluated by partial fraction expansion and manip-

ulation of the digamma function as shown in Appendix A.

Using equation 4.15, Z12
rm becomes

Z12
rm = jkρc

a∫
z=0

a∫
x0=0

∑
nx

∑
nz

cos(nxπa x) cos(nxπa z0) cos(mπa x) cos(rπa z0)
a3ΛnxΛnz

√
ΛmΛr[(nxπa )2 + (nzπa )2 − k2]
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= jkρc
1

a
√

ΛmΛr[(mπa )2 + (rπa )2 − k2]
. (4.18)

Given the impedance matrix Z̄ and hence the normalized impedance matrix η̄,

the reflection and transmission coefficients can now be calculated from equation 4.14

Figures 4.3 to 4.8 are the magnitude of the pressure reflection and transmission

coefficients of a right angle bend. They match the theoretical results of Shepherd and

Cabelli [59] who used a finite element technique instead of a modal technique. Also

shown in figures 4.3 to 4.7 are the experimental measurements of Shepherd and Cabelli

which match the theory very well.

Figure 4.3 shows the magnitude of the pressure reflection coefficients for an inci-

dent plane wave. At low frequencies |R00| approaches zero as expected. Also as expected,

|R20| and |R10| are zero since there is no coupling at low frequencies. As frequency

increases all the reflection coefficients are rising. However, remember that until the fre-

quency is above the cut-off of a given mode, it is evanescent and even if part of the plane

wave is reflected into it, it cannot propagate. At the cut-off frequency of the first mode

the junction region has a resonance and the self reflection coefficient approaches unity

because the impedance of the junction is very high. The coupling coefficients go to zero.

Again when the frequency reaches the cut-off frequency of the second mode there is a

junction region resonance and the plane wave reflection coefficient goes to unity. While

it appears that |R00| is always larger than the coupling coefficients above the cut-off

frequency of the first mode, there is a significant part of the plane wave coupled into
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the other modes. The theoretical results match the experimental measurements of Shep-

herd and Cabelli quite well, with most of the theoretical values within the error of the

measurements.

In figure 4.4 are shown the magnitudes of the pressure reflection coefficients for

an incident first mode. At the cut-off frequency of the first mode the magnitude of the

first mode self reflection coefficient |R11| is unity, and there is no coupling into the other

modes. Unlike the plane wave mode, the coupling coefficient |R01| is larger than the self

reflection coefficient |R11| in the region of ka =5, showing that there is significant modal

coupling at higher frequencies. Again the theoretical results are within the error of the

measurements.

In figure 4.5 are shown the magnitudes of the pressure self and mutual reflection

coefficients for an incident second mode. Close to the cut-off frequency of the third mode

the coupling between the second and first mode is greater than the self reflection of the

second mode. The measurements do not match the theory quite as well as for the lower

order mode reflection coefficients. This is to be expected as measurements of the second

mode are more difficult than for the lower modes.

Figure 4.6 shows the magnitude of the pressure transmission coefficients for an

incident plane wave. At low frequencies |T00| approaches unity as expected. At the

cut-off frequency of the first mode, the plane wave is not transmitted (as expected since

|R00| = 1) but the transmission coefficient |T10| is quite large, showing that much of

the plane wave is transmitted to the first mode. This is also expected as at the cut-

off frequency of the first mode, the trace wavenumber of the incident plane wave mode

matches the trace wavenumber of a transmitted first mode. At the cut-off frequency of
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the second mode |T20| gets large while |T01| and |T00| are small. Again the plane wave

is converted into the mode which is just above its cut-off frequency because the trace

wavenumbers match. The theoretical results are within the error of the measurements.

Figure 4.7 shows the magnitudes of the pressure transmission coefficients for an

incident first mode. At the cut-off frequency of the first mode there is no transmission

- as expected because |R11| = 1 at that frequency. At the cut-off frequency of the

second mode the |T12| is large again indicating significant modal coupling. Most of the

theoretical results are within the error of the measurements.

Figure 4.8 shows the magnitudes of the pressure transmission coefficients for an

incident second mode. The results are as expected, there is no self transmission at

the cut-off frequency of the second mode mode and good coupling to the first mode

which matches the trace wavenumber of the incident second mode. No experimental

measurements were available for comparison.

As a result of the above plots, some simple conclusions can be made. First, at

the cut-off frequency of a mode, the self reflection coefficient is unity while the self

transmission coefficient is zero. This is because of the resonances of the junction region.

Perhaps more importantly, the coupling between a mode and the next higher mode is

very large when the frequency is just above the cut-off frequency of the higher mode.

This is because of trace wavenumber matching of the incident mode and transmitted

mode. The plane wave mode will couple greatly into whichever mode is just above its

cut-off frequency. It is quite clear that a right angle bend will significantly change the

modal structure of the propagating wave at all but very low frequencies.
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The theoretical results match the experimental results of Shepherd and Cabelli

quite well. The theory is verified and can be used with confidence to determine the

scattering parameters of other types of junctions.
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Fig. 4.3. Magnitude of the pressure reflection coefficients of a right angle bend, Rm0,
for incident mode 0, into reflected modes m = 0, 1, 2.
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Fig. 4.4. Magnitude of the pressure reflection coefficients of a right angle bend, Rm1,
for incident mode 1, into reflected modes m = 0, 1, 2.
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Fig. 4.5. Magnitude of the pressure reflection coefficients of a right angle bend, Rm2,
for incident mode 2, into reflected modes m = 0, 1, 2.
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Fig. 4.6. Magnitude of the pressure transmission coefficients of a right angle bend, Tm0,
for incident mode 0, into transmitted modes m = 0, 1, 2.
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Fig. 4.7. Magnitude of the pressure transmission coefficients of a right angle bend, Tm1,
for incident mode 1, into transmitted modes m = 0, 1, 2.
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Fig. 4.8. Magnitude of the pressure transmission coefficients of a right angle bend, Tm2,
for incident mode 2, into transmitted modes m = 0, 1, 2.
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Fig. 4.9. Geometry of a T Junction

4.2.2 A T Junction

Consider the T junction as shown in 4.9. As in the previous example, there is

no y discontinuity thus y can be eliminated from the problem. The Green’s function

GJ is the same as the previous problem. In fact, the problem is so similar to the

previous example, that Z11 and Z12 are the same. By symmetry it is easy to see that

Z12 = Z21 = Z23 = Z32, Z33 = Z11 and Z13 = Z31.

For this problem the local coordinates are

x1 = x, z1 = z, x2 = z, z2 = x, x3 = x, z3 = (a− z). (4.19)
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Z13
rm is given by

Z13
rm = jkρc

a∫
x=0

a∫
x0=0

∑
nx

∑
nz

cos(nxπa x) cos(nxπa x0) cos(nzπa a) cos(mπa x) cos(rπa x0)
a3ΛnxΛnz

√
ΛmΛr[(nxπa )2 + (nzπa )2 − k2]

= jkρc δrm
∑
nz

(−1)nz

aΛnz [(
mπ
a )2 + (nzπa )2 − k2]

=
jkρc δrm

2km
[cot(

kma

2
) + tan(

kma

2
)]. (4.20)

Again in equation 4.20 the infinite summation was evalued by use of digamma

functions as shown in appendix A.

Figures 4.10 through 4.24 are the magnitudes of the reflection and transmission

coefficients for a T junction.

Figure 4.10 shows the magnitudes of pressure reflection coefficients for a plane

wave incident at one end of a T junction. At low frequencies the reflection coefficient

approaches the expected 1/3. As frequency rises the coefficient drops a bit but then

quickly rises to unity at the cut-off frequency of the first mode. At that frequency

there is no reflected coupling into other modes. This is because of a resonance of the

junction region. As the frequency goes up, the self reflection coefficient quickly drops

and the coupling coefficient between the plane wave and the first mode become larger.

At the cut-off frequency of the second mode the self reflection coefficient is zero. The

self reflection coefficient then rises to unity again at the cut-off frequency of the third

mode. At frequencies between the cut-off of the first and second mode the coupling from

the plane wave mode to the first mode is larger than the self reflection coefficient alone.
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Figure 4.11 shows the magnitudes of the pressure reflection coefficients for a plane

wave incident from the side branch of the T. At low frequencies the reflection coefficient

approaches 1/3 and rises smoothly to unity at the cut-off frequency of the first mode.

There is not significant coupling between modes until close to the cut-off of the second

mode where significant coupling between the plane wave and first mode exists.

Figure 4.12 shows the magnitudes of the pressure transmission coefficient for the

plane wave mode from the side branch to the end. As expected, the low frequency limit

is 2/3. The self transmission coefficient drops to zero at the cut-off frequency of the

first mode. The coupling coefficient from the plane wave to the first mode is quite high

near the cut-off frequency but drops at the cut-off frequency. It is expected to be high

near the cut-off frequency from trace wavenumber matching, but the reason for the drop

at the cut-off frequency is unknown. At the cut-off frequency of the second mode the

coupling between the plane wave and the second mode is very high again (because of

trace wavenumber matching) while the self reflection coefficient is zero.

Figure 4.13 shows the magnitudes of the pressure transmission coefficients for the

plane wave from one end to the side branch of the T. At low frequencies the value of the

self transmission coefficient approaches the expected 2/3. At the cut-off frequency of the

first mode the plane mode is well coupled into the first mode while the self transmission

coefficient is zero. At the cut-off frequency of the second mode the plane wave mode is

well coupled into the second mode while the self transmission coefficient is zero. Again the

coupling to the higher order modes is expected because of trace wavenumber matching

at the cut-off frequencies of the modes. Clearly modal coupling is important.
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Figure 4.14 shows the magnitudes of the pressure transmission coefficient for the

plane mode between the two ends of the T. The plane wave coefficient starts at 2/3 rises a

little and drops sharply to zero at the cut-off frequency of the first mode. This is because

of the cavity resonance which causes a high impedance to be seen to the incoming wave.

It then sharply rises with increasing frequency reaching unity at the cut-off frequency

of the second mode. The mutual coupling coefficients are both quite small compared to

the self coupling coefficients.

Figure 4.15 shows magnitudes of the pressure reflection coefficients for the first

mode incident at one end of the T. At the cut-off frequency for the mode, the reflec-

tion coefficient approaches unity. It wavers a bit and drops toward zero at the cut-off

frequency of the second mode. There is not significant coupling between modes until

the cut-off frequency of the second mode, where the coupling from the first mode to the

second mode is significant.

In figure 4.16 is shown the magnitudes of the pressure reflection coefficients for

the first mode incident at the side branch of the T. The self reflection coefficient is large

at the cut-off frequency of the first mode and stays pretty high for all frequencies.

Figure 4.17 shows the magnitudes of the pressure transmission coefficients for the

first mode from the side branch to the end. At the cut-off frequency of the first mode

the transmission coefficients are all zero since the reflection coefficient is unity. There is

significant coupling to the second mode near the cut-off frequency of the second mode.

Figure 4.18 shows the magnitudes of the pressure transmission coefficients for the

first mode from the end to the side branch of the T. At the cut-off frequency of the first



80

mode the transmission coefficients are all zero. Above the cut-off frequency of the second

mode the coupling coefficient between the first and second mode is very high.

Figure 4.19 shows the magnitudes of the pressure transmission coefficient for

the first mode between the two ends. There is little coupling between modes but the

transmission coefficient is small for frequencies near the cut-off frequency of the first

mode. The transmission coefficient approaches unity at the cut-off frequency of the

second mode.

Figure 4.20 shows the magnitudes of the pressure reflection coefficients for the

second mode incident at one end of the T. At the cut-off frequency of the second mode,

the self reflection coefficient approaches unity. There is little modal coupling.

Figure 4.21 shows the magnitudes of the pressure reflection coefficients for the

second mode incident at the side branch of the T. The self reflection coefficient approaches

unity at the cut-off frequency. Near the cut-off frequency of the third mode the mutual

reflection coefficient into the first mode is larger than the self reflection coefficient.

Figure 4.22 shows the magnitudes of the pressure transmission coefficients for the

second mode from the side branch to one end. The transmission coefficients are quite

complicated but there is not significant modal coupling.

Figure 4.23 shows the magnitudes of the pressure transmission coefficients for the

second mode from one end to the side branch of the T. Like the coefficient from the side

to the end, the overall coupling is low.

Figure 4.24 shows the magnitudes of the pressure transmission coefficients for the

second mode between the ends. There is little coupling between modes, but the self

transmission coefficient is high.
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From the above plots one can conclude that in general the side branch does not

contribute heavily to modal coupling for transmission between the ends of the T, but it

does affect the self transmission of the modes between the ends of the T. There is very

significant coupling from the mode incident on the side branch to a another mode in

the ends just above its cut-off frequency because of trace wavenumber matching (just as

with the right angle bend). The modal coupling coefficient is often higher in magnitude

of than the self transmission coefficient and self reflection coefficient. Clearly modal

coupling with the side branch is very important.

In addition, one can see that, |S21
00 |, the magnitude of the coupling from the side

branch plane wave mode to the plane wave mode in the T ends, drops to zero at the

cut-off frequency and is quite small at higher frequencies. This is important because it

says that a speaker mounted in the side of a duct is far less efficient at producing plane

wave modes at high frequencies - something of practical concern in active noise control

systems.
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Fig. 4.10. Magnitude of the pressure reflection coefficients of one end of a T junction,
S11
m0, for incident mode 0 into reflected modes m = 0, 1, 2.
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Fig. 4.11. Magnitude of the pressure reflection coefficients of the side branch of a T
junction, S22

m0, for incident mode 0 into reflected modes m = 0, 1, 2.
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Fig. 4.12. Magnitude of the pressure transmission coefficients S21
m0, from mode 0 in one

end of a T to modes m = 0, 1, 2 in the side branch.
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Fig. 4.13. Magnitude of the pressure transmission coefficients S12
m0, from mode 0 in the

side branch of a T to modes m = 0, 1, 2 in one end.
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Fig. 4.14. Magnitude of the pressure transmission coefficients S13
m0, from mode 0 in one

end of a T to modes m = 0, 1, 2 in the other end.
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Fig. 4.15. Magnitude of the pressure reflection coefficients S11
m1, end of a T junction for

incident mode 1 into reflected modes m = 0, 1, 2.
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Fig. 4.16. Magnitude of the pressure reflection coefficients S22
m1, from the side branch

of a T junction for incident mode 1 into reflected modes m = 0, 1, 2.
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Fig. 4.17. Magnitude of the pressure transmission coefficients S21
m1, from mode 1 in one

end of a T to modes m = 0, 1, 2 in the side branch.
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Fig. 4.18. Magnitude of the pressure transmission coefficients S12
m1, from mode 1 in the

side branch of a T to modes m = 0, 1, 2 in one end.
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Fig. 4.19. Magnitude of the pressure transmission coefficients S13
m1, from mode 1 in one

end of a T to modes m = 0, 1, 2 in the other end.
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Fig. 4.20. Magnitude of the pressure reflection coefficients, S11
m2, from of one end of a

T junction for incident mode 2 into reflected modes m = 0, 1, 2.
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Fig. 4.21. Magnitude of the pressure reflection coefficients S22
m2.

, of the side branch of a T junction for incident mode 2 into reflected modes
m = 0, 1, 2.
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Fig. 4.22. Magnitude of the pressure transmission coefficients S21
m2, from mode 2 in one

end of a T to modes m = 0, 1, 2 in the side branch.
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Fig. 4.23. Magnitude of the pressure transmission coefficients S12
m2, from mode 2 in the

side branch of a T to modes m = 0, 1, 2 in one end.
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Fig. 4.24. Magnitude of the pressure transmission coefficients S13
m2, from mode 2 in one

end of a T to modes m = 0, 1, 2 in the other end.
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Chapter 5

Modal Scattering and Radiation at an Infinite Baffle

This chapter will develop expressions for the reflection coefficients at the end of

a baffled duct and discuss the characteristics of the radiated pressure.

5.1 General Derivation of Radiation Impedance

Calculating the reflection coefficients at the end of a finite rectangular waveguide is

a difficult, but important problem. Once the reflection coefficients are known, the velocity

at the end of the duct is known, and the radiation from the duct can be computed. With

a known velocity distribution, radiation from the end of a rectangular duct is very similar

to radiation from a baffled rectangular plate. Since the radiation characteristics of baffled

plates are known, the radiation characteristics of the baffled duct are known as well.

There are two basic approaches to determining the radiation of a vibrating re-

gion: use of the Kirchoff-Helmholtz integral theorem (direct integration of the differen-

tial equation) and wavenumber transform techniques. The solution that follows uses the

Kirchoff-Helmholtz integral theorem in the form of the Rayleigh integral.

To solve the duct radiation problem, assume a semi-infinite duct terminating in

an infinite baffle at the plane z = 0 as shown in figure 5.1. In the duct (for z < 0) the

pressure and velocity in the z direction can be expressed as modal expansions. Using
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Fig. 5.1. Geometry used in calculating reflection and radiation from a baffled duct.

the notation in chapter 2

p(x, y, z) =
∑
M

(AMe−γMz + BMeγM z)ψM (x, y) (5.1)

and

uz(x, y, z) =
∑
M

YM (AMe−γM z −BMeγM z)ψM (x, y). (5.2)

Since there is no field incident on the duct junction from the free space side, BM

must be directly related to AM and can be written as

BM =
∑
N

RMNAN . (5.3)

Using equation 5.3, equations 5.1 and 5.2 can be rewritten as

p(x, y, z) =
∑
M

(AMe−γM +
∑
N

RMNANeγM z)ψM (x, y) (5.4)
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and

uz(x, y, z) =
∑
M

YM (AMe−γM z −
∑
N

RMNANeγM z)ψM (x, y). (5.5)

For a baffled duct, the velocity on the baffle is zero and the pressure can be

determined by using the Rayleigh integral as described in chapter 2. Using the Green’s

function for a baffled radiator, and given the normal velocity uz at z = 0, the pressure

outside the duct will be

p(x, y, z) =
jkρc

2π

∫∫
S

uz(x0, y0)
e−jkr

r
dS (5.6)

where r =
√

(x− x0)2 + (y − y0)2 + z2 and S is the area of the duct.

At the baffle, the pressure p and normal velocity uz are continuous across the

interface. Inserting equations 5.4 and 5.5 into equation 5.6 yields

∑
M

(AM +
∑
N

RMNAN )ψM (x, y) =
jkρc

2π

∑
M

YM (AM −
∑
N

RMNAN )

×
a∫

0

b∫
0

ψM (x0, y0)
e−jkr

r
dx0dy0 (5.7)

where

r =
√

(x− x0)2 + (y − y0)2. (5.8)

Multiplying equation 5.7 by ψR and integrating across the duct cross section will

eliminate the sum on the left hand side of the equation because of orthogonality of the
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modes. Equation 5.7 then reduces to

(AR +
∑
N

RRNAN ) =
∑
M

ZrRMYM (AM −
∑
N

RMNAN ) (5.9)

where the complex mutual modal radiation impedance ZrRM is

ZrRM =
jkρc

2π

∫∫
S

∫∫
S

ψR(x, y)ψM (x0, y0)
e−jkr

r
dx0dy0dxdy. (5.10)

Appendix B has a derivation of an alternate form of ZrRM which requires only

two integrations instead of four.

Notice that equation 5.9 has ZrRM multiplied by YM . Since YM is the charac-

teristic modal admittance, multiplication by YM is normalization to the characteristic

modal impedance. Thus, it makes sense to define the normalized mutual modal radiation

impedance ζRM as

ζRM = ZrRMYM . (5.11)

Because of reciprocity the Green’s function is symmetric with respect to ~x and

~x0 and so ZrRM = ZrMR. However, ζRM 6= ζMR because YR 6= YM .

It is also interesting to note that ZrRM can also be identified as a scaled modal

coefficient in a modal decomposition of e−jkr/r. The integral in equation 5.10 is the same

one required when doing a modal decomposition of the infinite baffle Green’s function.
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5.2 Development of Matrix Equations

Using the matrices developed in chapter 2 and defining two new ones, one can

eliminate AM and AR from equation 5.9 and solve for the reflection coefficients RRM .

If one defines the matrices

Z̄r =


Zr00 Zr01 · · ·

Zr10 Zr11 · · ·
...

...
...

 ζ̄ =


ζ00 ζ01 · · ·

ζ10 ζ11 · · ·
...

...
...

 (5.12)

equation 5.9 can be rewritten

(Ī + R̄)Ā = Z̄rȲ (Ī − R̄)Ā = ζ̄(Ī − R̄)Ā (5.13)

from which R̄ is found to be

R̄ = (Z̄rȲ + Ī)−1(Z̄rȲ − Ī) = (ζ̄ + Ī)−1(ζ̄ − Ī). (5.14)

Once again it can be seen that in matrix form the equation for the reflection

coefficients takes the standard form of an impedance discontinuity.
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5.3 ZrRM for a Rectangular Duct

For a rectangular duct equation 5.10 becomes

ZrRM =
jkρc

2π

a∫
0

b∫
0

a∫
0

b∫
0

cos( rxπa x)√
aΛrx

cos( ryπb y)√
bΛry

cos(mxπa x0)√
aΛmx

cos(myπb y0)√
bΛmy

e−jkr

r
dx0dy0dxdy.

(5.15)

Equation 5.15 is one of the forms of equation 5.10 to which there is no analytical

solution.

The most straightforward (albeit time consuming) way to evaluate ZrRM is to

compute the four dimensional integral itself. The transformation shown in Appendix

B is not easier to compute numerically. Appendix C discusses the technique used to

numerically integrate equation 5.15.

One of the first things to notice is that because of the symmetry of the problem

(and hence the Green’s function) all the coupling terms between even and odd numbered

modes are zero (i.e Zr01, Zr10, Zr12, Zr21 are all zero). This means that there is no

coupling between even and odd modes.

ζRM was evaluated for rx = 0, 1, 2, ry = 0, mx = 0, 1, 2, my = 0 and a/b = 2.25.

The ratio of a/b corresponds to that of the duct used in the experimental investigations.

Figure 5.2 shows the real part of the normalized self modal radiation impedances

ζ00, ζ11, and ζ22. For each mode, the self-resistance is zero at the cut-off frequency of the

mode and rises quickly toward unity above the cut-off frequency. A radiation resistance

close to unity means that very little energy is reflected back into that mode. It is either

reflected back into another mode or is radiated out the end of the duct.
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Figure 5.3 shows the imaginary part of the normalized self modal radiation impedances

ζ00, ζ11, and ζ22. For each mode, the self reactance is zero at the cut-off frequency, quickly

rises to a value near 0.5 close to the cut-off frequency of the next mode and then drops

back toward zero at higher frequencies. Below the cut-off frequency the reactance is

small, but only values above the cut-off frequency are significant since only modes above

their cut-off frequency propagate energy toward the end of the duct. The radiation

reactance is a measure of the energy stored in the near field of the end of the duct.

Figure 5.5 shows the real part of the mutual modal radiation impedances ζ20 and

ζ02. The mutual resistance for the (02) mode is positive below the cut-off frequency and

negative above. The mutual resistance for the (20) mode is negative for all frequencies.

Figure 5.5 shows the imaginary part of the mutual modal radiation impedance ζ20

and ζ02. The mutual reactance for the (02) mode and the (20) mode are similar, negative

below the cut-off frequency and positive above the cut-off frequency of the second mode.

While the physical interpretation of these values is not clear, it is clear that the

(02) coupling is different from the (20) coupling. Because the impedances are non-zero

it is also clear that both propagating energy and evanescent energy (energy stored in the

near field) are being exchanged between the modes. Since the amplitudes of the mutual

radiation impedance are not negligible compared to the self radiation impedances, modal

coupling at the end of the duct should not be ignored at frequencies near or above the

cut-off frequency of the mode.
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Fig. 5.2. Normalized self radiation resistances of an infinite baffle, Re{ζmm}, for m =
0, 1, 2, with a/b = 2.25 .
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Fig. 5.3. Normalized self radiation reactances of an infinite baffle, Im{ζmm}, for m =
0, 1, 2 with a/b = 2.25.
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Fig. 5.4. Normalized mutual radiation resistances of an infinite baffle, Re{ζrm} and
Im{ζrm}, for m = 0, 1, 2 with a/b = 2.25.
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Fig. 5.5. Normalized mutual radiation reactances of an infinite baffle, Re{ζrm} and
Im{ζrm}, for m = 0, 1, 2 with a/b = 2.25.
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5.4 Reflection Coefficients

Having computed ζRM , the reflection coefficients can be easily evaluated from

equation 5.14.

Figure 5.6 shows the absolute value of the self modal reflection coefficients for

an infinite duct with a/b = 2.25. The self reflection coefficients are unity at the cut-off

frequency and decay to zero with increasing frequency.

Figure 5.7 shows the phase of the self modal reflection coefficients for an infinite

duct with a/b = 2.25. The phase of the self reflection coefficients are π at the cut-

off frequency of the mode. So, at the cut-off frequency of the mode, the infinite baffle

termination looks like a pressure release surface to that mode. The phase of R00 decreases

to about π/2 at the cut-off frequency of the first mode and begins to decrease again above

the cut-off frequency of the second mode. The phase of the first mode decreases to about

π/2 near the cut-off frequency of the second mode.

Figure 5.8 shows the absolute value of the mutual modal pressure reflection co-

efficients for an infinite duct with a/b = 2.25. The absolute value of R00 is plotted

for comparison. The first thing to note is that at the cut-off frequency |R02| = 0 but

|R20| 6= 0. This means that the second mode does not couple into the plane wave mode

at its cut-off frequency, but the plane wave mode does couple into the second mode.

The values of the coefficients below the cut-off frequency are not very important as the

higher mode does not propagate. The second thing to note is that |R20| is greater than

|R00| above the cutoff frequency, so at higher frequencies more of the plane wave mode

is reflected into the second mode than the plane wave mode. Obviously the coupling
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effects of the plane wave mode into propagating higher order modes are not negligible in

any way.

Figure 5.9 shows the phase of the mutual modal pressure reflection coefficients

for an infinite duct with a/b = 2.25. The phase of R02 and R20 differ by π/2 until the

cut-off frequency of the mode when it begins to decrease. Above the cut-off frequency

of the second mode the phase of the two is the same.
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Fig. 5.6. Magnitude of the self pressure reflection coefficients of an infinite baffle, Rmm,
for m = 0, 1, 2 with a/b = 2.25.
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Fig. 5.7. Phase of the self pressure reflection coefficients of an infinite baffle, Rmm, for
m = 0, 1, 2 with a/b = 2.25.
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Fig. 5.8. Magnitude of the mutual pressure reflection coefficients R02 and R20 of an
infinite baffle for m = 0, 1, 2, with a/b = 2.25. |R00| is shown for comparison.
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Fig. 5.9. Phase of the mutual reflection coefficients R02 and R20 of an infinite baffle for
m = 0, 1, 2, with a/b = 2.25. The phase of R00 is shown for comparison.
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5.5 Radiation

5.5.1 Directivity

Having determined the reflection coefficients RRM , the velocity at the interface

is completely determined. Given the velocity distribution, the pressure at any point

outside the duct can be determined by use of the Rayleigh integral.

The pressure directivity and the radiated power of each particular mode are very

useful in determining the radiation outside the duct given a mode incident at the end of

the duct.

The velocity at the end of the duct is

uz =
∑
M

YM (AM −
∑
N

RMNAN )φM . (5.16)

The pressure outside the duct, for any position ~R is given by the Rayleigh integral

p(x, y, z) =
γM
2π

∑
M

YM(AM −
∑
N

RMNAN )
∫∫
S0

ψM (x0, y0)
ejkR

R
dx0dy0. (5.17)

where R =
√

(x− x0)2 + (y − y0)2 + z2.

Even if only one mode is incident, there can be many modes reflected, so regard-

less of the incident wave there is a superposition of many modes. However, to better

understand the physics of the problem one can consider the radiation of a single mode.
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The pressure will then have the form

pM (x, y, z) = CM

∫∫
S0

ψM (x0, y0)
ejkR

R
dx0dy0. (5.18)

where CM = jkρc/(2π)YMAM (1−RMM ) is the total modal amplitude of the mode M.

To determine the directivity pattern and radiated power, the pressure can be

evaluated in the far field. The standard far field approximation is

R ≈ r − x sin(θ) cos(φ)− y sin(θ) sin(φ) (5.19)

where

r =
√

x2 + y2 + z2. (5.20)

With this approximation equation 5.18 becomes

pM (x, y, z) = CM
ejkr

r

∫∫
S0

ψ(x0, y0)e−j(xα+yβ)dx0dy0 (5.21)

where α = k sin(θ) cos(φ) and β = k sin(θ) sin(φ).

The integral can be recognized as a wavenumber transform of ψ (see appendix B)

by replacing α and β with kx and ky. The far field equation can be then be written

pM(r, φ, θ) = CM
ejkr

r
ΨM (α, β). (5.22)
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For the purposes of this thesis, the directivity DM (φ, θ) is defined as the ratio

of the magnitude of ΨM (α, β) divided by the maximum value of ΨM (α, β). With this

definition DM (φ, θ) contains the angular dependence of pM .

Figure 5.10 shows the directivity for the plane wave mode with ka = 0.5π, 1.5π,

2.5π, and 3.5π. Recall that the first higher order mode cut-off is at ka = π. Below the

cut-off frequency of the first mode the radiation is pretty much omni-directional. Just

above the cut-off frequency of the first mode beaming effects are clearly apparent. Above

the cut-off frequency of the second mode lobing has begun.

Figure 5.11 shows the directivity for the first horizontal mode with ka = 0.5π,

1.5π, 2.5π, and 3.5π. In contrast to the plane wave mode, there is no radiation on axis;

the radiation is beamed far off to the sides. Below the cut-off frequency for the mode the

direction of maximum radiation is at ±90o. At higher frequencies the radiation beams

narrow and get closer to the axis. Secondary lobes are apparent above cut-off frequency

of the third mode.

Figure 5.12 shows the directivity for the second horizontal mode with ka = 0.5π,

1.5π, 2.5π, 3.5π. Again, below the cut-off frequency of the mode the radiation maximum

is at ±90o. Again, above cut-off frequency of the mode the beams are directed more

toward the main axis.
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Fig. 5.10. D00(φ), the directivity of the radiated pressure for a plane wave mode incident
at an infinite baffled end with θ = 0 and a/b = 2.25
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Fig. 5.11. D10(φ), the directivity of the radiated pressure for the first horizontal mode
incident at an infinite baffled end θ = 0 and a/b = 2.25



119

 ka= 0.5 π
 ka= 1.5 π
 ka= 2.5 π
 ka= 3.5 π

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D20 (φ ), directivity for m x=2 and my=0

φ (degrees)

D
20

(φ
)

Radiation Directivity for a Duct Terminated in an Infinite Baffle

Fig. 5.12. D20(φ), the directivity of the radiated pressure for the second horizontal
mode wave mode incident at an infinite baffled end with θ = 0 and a/b = 2.25
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5.5.2 Radiated Power

The radiated power can be obtained by several methods. The power could be

obtained by integrating the square of the far field pressure. As with radiation from

rectangular panels [66], this would lead to more integrals which must be approximated or

numerically evaluated. Alternatively, one could use the knowledge of the duct reflection

coefficients to compute the radiated power.

The power in a single traveling mode of amplitude AM is

ΠM =
kM
2kρc

|AM |2. (5.23)

From this the total power traveling toward the duct end is

Π+ =
∑
M

kM
2kρc

|AM |2 = ĀH Ȳ Ā (5.24)

where H denotes the hermitian operator which is the complex conjugate transpose.

The total power reflected back from the end of the duct is

Π− = B̄H Ȳ B̄ = (R̄Ā)H Ȳ R̄Ā = ĀHR̄H Ȳ R̄Ā. (5.25)

The difference between the incident and the reflected powers must be the radiated

power because there are no losses. Thus the total radiated power is

ΠRad = ĀH(Ȳ − R̄H Ȳ R̄)Ā. (5.26)
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Chapter 6

Experimental Results

This chapter will discuss the experimental measurements of the reflection coeffi-

cients of a baffled duct.

6.1 Modal Decomposition

In order to measure reflection coefficients, one must first determine the modal

amplitudes AM and BM in the duct. Experimentally this is done by measuring the

pressure at a number of discrete positions and determining AM and BM from those

measurements.

In chapter 2 it was shown that the pressure could be written

p(x, y, z) =
∑
M

(AMe−γM z + BMeγM z)ψM (x, y). (6.1)

Defining the modal pressure as

PM (z) = (AMe−γM z + BMeγM z) (6.2)

equation 6.1 can be rewritten in terms of modal pressures

p(x, y, z) =
∑
M

PM (z)ψM (x, y). (6.3)
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This equation shows that the pressure can be broken into a modal component

which is ẑ dependent and an eigenfunction which is x̂ and ŷ dependent.

Defining the matrices

p̄ =


p(x1, y1, z1) p(x1, y1, z2) · · ·

p(x2, y2, z1) p(x2, y2, z2) · · ·
...

...
. . .

 (6.4)

ψ̄ =


ψ0(x1, y1) ψ1(x1, y1) · · ·

ψ0(x2, y2) ψ1(x2, y2) · · ·
...

...
. . .

 (6.5)

and

P̄M =


P0(z1) P0(z2) · · ·

P1(z1) P1(z2) · · ·
...

...
. . .

 (6.6)

a collection of pressure measurements can be written as

p̄ = ψ̄P̄M (6.7)

and the modal pressure can be found from a collection of pressure measurements by the

equation

P̄M = ψ̄−1p̄. (6.8)
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To be able to uniquely determine P̄M requires that ψ̄ have a generalized inverse

which means that, among other things, the columns of ψ̄ must be linearly independent.

This limits the x̂ and ŷ positions of the measurements. In addition, to discern N modes

p̄ and ψ̄ must have at least N rows. If they have more than N rows a least squares

solution is obtained.

Once the PbarM are found AM and BM are easily determined.

Defining the matrices

P̄MZ =


PM (z1)

PM (z2)

...

 φ̄M =


e−γM z1 eγM z1

e−γM z2 eγM z2

...
...

 (6.9)

the PM and hence AM and BM can be found since P̄MZ can be expressed as

P̄MZ = φ̄

 AM

BM

 (6.10)

Then AM and BM can be expressed as

 AM

BM

 = φ̄−1
M P̄MZ (6.11)

where φ̄−1
M is the generalized inverse of φ̄M .
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From equation 6.11 one can see that as a minimum at least measurements at at

least 2 different ẑ positions and N different x̂, ŷ positions are required to determine AM

and BM for N modes.

6.1.1 Probes vs. Arrays

Since pressures must be measured at several positions the use of microphone ar-

rays or microphone probes immediately suggest themselves. Early experimental work

relied on movable microphone probes for measurements. However, with the advent of

small electret microphones, microphone arrays are now practical for use in modal mea-

surements.

When using a single microphone or microphone probe, the problem of matching

the microphones does not exist since there is only one microphone. However, because

the microphone must be moved to many positions the technique is very time consuming

and fraught with positioning errors.

If an array of microphones is used, positioning problems are either eliminated or

reduced; however, microphone calibration and matching must now be considered. Be-

cause of the complexity of the electronics and calibration, the use of a full two dimensional

array of microphones is also fraught with difficulties.

As a compromise between the microphone probe and two dimensional array, a

linear array of microphones could be used. Either a horizontal array which is traversed

along the duct length or an axial array which is traversed across the duct width could

be used. In either case, there is less positioning error than with the single microphone
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probe and a considerable speed up of the measurement process, while there is less cal-

ibration and phase matching problems and less electronics complexity than with a full

two dimensional array. For these reasons a linear array was used for the measurements

in this thesis.

6.1.2 Horizontal vs. Axial Arrays

Once a researcher has decided to use linear arrays, she or he must then choose

between a horizontal or axial array configuration. Looking at the phase characteristics

of the measurements in both directions will help determine the limitations of both types

of measurements.

In the axial direction the pressure varies according to the term e−γM z. The phase

in the axial direction is position and frequency dependent. Even small phase errors in

the measurements will lead to poor calculations of Ā and B̄.

In the horizontal direction the pressure varies according to the term ψM (x) which

is not frequency dependent and has only a plus or minus phase. Phase errors are less

likely to be a problem in the horizontal direction.

The microphones and electronics have small phase differences from channel to

channel that are difficult to eliminate. If accurate axial placement is easier than accurate

horizontal placement, mounting the microphones in a horizontal array and accurately

positioning it axially should provide a better measurement than an axial array since the

same microphone is used to sample the axial direction, thus eliminating electronic and

microphone phase differences from the axial measurements and only positioning errors

exist.
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Fig. 6.1. Side mounted speaker configuration

For the duct used in the experimental work of this thesis it was much easier to

accurately position the microphones axially than horizontally, so a horizontal array was

used.

6.2 Modal Generation

Modal generation is a problem which has already been thoroughly researched

[3, 18, 19]. The usual technique is to have a number of sources mounted on the outside

walls of the duct as shown in figure 6.1. The problem with this configuration is that the

amplitude of the modes generated goes as sinc(ka) where a is the radius of the speaker.

Thus at some frequencies a given mode cannot be generated. In contrast, by placing the

sources at the end of the duct as shown in figure 6.2 the modal coupling and generation

is not frequency dependent (assuming the mode is not cut-off).
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Fig. 6.2. Back mounted speaker configuration

6.3 Experimental Apparatus

The experiments were carried out in a duct 22.8 cm horizontally by 10 cm ver-

tically (about 9 in x 4 in) by 192 cm long as shown in figure 6.3 . The dimensions

were chosen so two horizontal modes could propagate before the first vertical mode was

above its cut-off frequency. The duct was made of 3/4 inch thick density particle board.

Because of the small dimensions of the duct, the walls were very rigid. The walls of the

duct were not felt to move at any time during the experiment thus the assumption of

rigid walls was made. The cut-off frequencies of the first and second cross modes were

found experimentally to be 756 Hz and 1513 Hz. For the 25 oC room the theoretical

frequencies are 756.5 Hz and 1513 Hz. Since the theoretical and experimental cut-off

frequencies agree damping is negligible and the assumption of rigid walls is valid.

The array consisted of four 1/4 inch microphones placed at positions of x = 0.005

m, x = 0.044 m, x = 0.079 m and x = 0.143 m fixed in a wire mount as shown in
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Fig. 6.3. Duct Setup

figure 6.4. The spacing resulted from attempting to place one microphone as close to

the wall as possible, one microphone at the horizontal midpoint and the other two at

the one third and one fourth points. The small size of the microphones and wire mount

ensured that the acoustic field was disturbed very little by the measurement devices.

The microphones were placed at a vertical height of y = 5 cm, the vertical mid line of

the duct. By placing the microphones at that height, only the vertical plane wave and

odd order modes would be measured - the first vertical mode would not be measured.

The wire mount was attached to a 3/4 in steel tape measure which was used to move

the microphone array and measure its axial position.

The microphones were Panasonic W63AT electret microphones which have a fre-

quency response of ±3 dB from 20 Hz to 20 kHz. A microphone preamplifier with four

identical channels was specially designed for use with the Panasonic electret elements.

The amplifier has level adjustments for each individual microphone. The bias resistors

for the microphones were individually chosen for each microphone element. With optimal

bias resistors, the harmonic distortion was as low as a B&K 4130 reference microphone.
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Fig. 6.4. Microphone Array Setup

With different values for the bias resistors, the overall gain of the microphone/amplifier

cascade was different between channels, but the difference was removed by the use of the

individual level controls on the preamplifier. The phase difference between elements was

nominally ±1o.

The acoustic source consisted of two 4 inch VIFA loudspeakers end mounted at

one end of the duct as shown in figure 6.2. The speakers had a reasonably flat frequency

response from 300 Hz to 4000 Hz. Three different modal configurations can be generated

by having both speakers in phase (generating mostly plane waves), the two speakers out

of phase (generating mostly the first horizontal mode), one speaker being on and one

being off (generating both plane waves and the first horizontal mode).

The data was digitized by a Hewlett Packard HP 3566A Signal Analyzer. The HP

3566A can take both FFT and swept sine measurements and allows for auto ranging of
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Fig. 6.5. Overall Experimental Setup

the input channels. In auto range mode the analyzer will adjust the maximum input level

of each channel to ensure that the full dynamic range of the analog to digital converter

is used. The analyzer has a signal-to-noise ratio of 80 dB and a matching of 0.1 dB and

0.5o between channels.

The analyzer signal generator was set to 200mV output and the inputs were set to

auto range. The speaker amplifier was adjusted so that there was a nominal 90 dB re 20

µ Pa acoustic pressure level at the end of the duct - at least 30 dB above the background

noise level of the room. The frequency of the generator was swept from 400 Hz to 1800

Hz at 128 evenly spaced points. The analyzer was set so that at each measurement

frequency it would wait eight cycles for the signal to settle and then integrate the input

for sixteen cycles to achieve a measurement.

All the microphone inputs were referenced to the source signal from the analyzer

so that the phase difference in the pressures at different horizontal and axial locations

could be measured.

A diagram of the experimental configuration is shown in figure 6.5.
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6.4 Data Reduction

The data measured by the signal analyzer was stored in HP’s native SDF for-

mat. The data was loaded directly into MATLAB for analysis with a specially written

program.

From the horizontal measurements for each axial position the modal pressures

PM (z) were extracted using equation 6.9. From the modal pressures PM (z), the ampli-

tudes AM and BM were extracted using equation 6.11. Errors were not included in the

decomposition.

6.5 Microphone Calibration and Measurement Caveats

The standard technique for systematic microphone calibration to remove ampli-

tude and phase differences is to expose the microphones to the same field, measure the

amplitude and phase differences and use those differences to correct the measured data.

An alternate method is the “switching” calibration method where the microphones are

physically switched, the measurement redone, and the results are combined in a way

to remove the microphone differences. Because of the number of microphones involved

in this experiment, the “switching” calibration method is not easily employed thus the

other method was used.

To expose the microphones to the same field, the microphones were placed in a

3/8 in thick aluminum plate at the end of a 1M long, 4 in diameter round PVC duct. The

duct was driven by a speaker covering the entire width of the duct at the end opposite

the microphones. It was found that when measuring the frequency response between
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microphones with a random noise applied to the speaker, the microphone calibration

was not repeatable. If the microphone was removed and replaced in the same position,

the calibration would change by up to ±0.5o at some frequencies. The change was

seemingly random - no systematic change could be found. If the plate was rotated 90o,

the calibration would change up to ±0.5o. If the plate were rotated back, the calibration

would match the previous calibration to within millidegrees. What does this say? First,

the rotation results say it is very difficult to expose the microphones to a uniform field

for calibration purposes. Second, the removal and replacement results say that since

it is so difficult to get the microphones back into the same position that the switching

method of calibration is essentially useless with these microphones.

A similar problem with repeatability showed itself during the measurement pro-

cess. When measuring using random noise and frequency response analysis it was found

that repeated experiments did not give the same results. Repeated trials were found to

differ in phase by as much as 1.5o.

A possible explanation of part of the measurement and calibration problems comes

from Bendat and Piersol[5]. When using FFT analysis, the buffer length of the FFT must

be longer than the impulse response of the system that is being measured in order to get

accurate results. In the calibration tube and in the rigid walled duct, the standing wave

ratio is quite high, which means the impulse response is very long. Unless an extremely

long buffer length (longer than the HP analyzer allows) is used with the FFT, consistent

and accurate results cannot be expected. As a caveat to would be experimenters, make

sure the length of the FFT buffer is longer than the impulse response of the system that

is being measured. A possible solution to the calibration problem is to add damping to
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the calibration tube in order to reduce the length of the impulse response. However, one

must be careful to add the damping far enough away from the microphones so that they

are all still exposed to the same field.

Another solution to the measurement problem is to use swept sine analysis instead

of random noise frequency response measurement. It was this solution that was finally

used. Upon switching to swept sine analysis, consistent and repeatable results were

obtained for both calibration and measurements.

It was found that the microphones matched well enough and were stable enough

that phase calibration was unnecessary when the horizontal array was used. The results

were repeatable and phase correction did not change the extracted modal coefficients

enough to warrant the extra time that phase calibration would add to the measurement.

(The match between the theoretical curves and experimental results was the same re-

gardless of whether or not phase calibration was done.) Overall amplitude calibration

was achieved as stated earlier, through the use of the individual level controls on the

microphone preamplifier.

6.6 Measurement of Reflection at an Infinite Baffle

The reflection coefficient from the end of a duct mounted in an infinite baffle was

calculated from measured pressures inside the duct. The “infinite” baffle was two 4 ft

x 8 ft pieces of 5/8 in particle board with the duct mounted in the center as shown in

figure 6.6.
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Fig. 6.6. Baffle Used for Reflection Coefficient Measurements.

Measurements of the pressure were taken at four horizontal positions (at x = 0.5

cm, 4.4 cm, 7.9 cm, and 14.3 cm) and at six axial positions (at z = 15.0 cm, 17.0 cm,

19.0 cm, 21.0 cm, 23.0 cm, and 25.0 cm) where z = 0 is the open end of the duct.

Figure 6.7 shows |R00|, the magnitude of the plane wave self pressure reflection

coefficient, as determined from the in duct pressure measurements compared with the

theoretical results. The plot goes from ka = pi to ka = 3π. The experimental results

are slightly higher than the theoretical results, but the shape of the curve is correct. At

about ka = 2π, the experimental results begin to show more variance. ka = 2π is the

cut-off frequency of the second horizontal mode so it is not surprising that the results

are less accurate near and above that frequency.

Figure 6.8 shows |R11|, the magnitude of pressure self reflection coefficient for

the first mode, as determined from the in duct pressure measurements compared with

the theoretical results. The cut-off frequency of the first horizontal mode is ka = π so
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the experimental results are not expected to be accurate below that point. Just above

ka = π the reflection coefficient is very close to unity and the standing wave field is very

strong so accurate results are not expected there either. From ka = 4 to ka = 2π the

experimental results compare very well with the theoretical results, verifying the validity

of the theory. Above the ka = 2π cut-off frequency of the second mode the results are

again less accurate.

Figure 6.9 shows |R20|, the magnitude of the plane wave to first mode mutual

pressure reflection coefficient, as determined from the in duct pressure measurements

compared with the theoretical results. While the experimental results have a large

variance, the theoretical results seem to be a pretty good fit through the middle of the

data. Because of the low amplitude of this coefficient the measurement was expected to

be difficult and the variance was expected to be large.

Overall the experimental results match the theory quite well. The theoretical

curves run through the experimental curves for both self reflection coefficients and mutual

reflection coefficients thus validating the theory.
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Fig. 6.7. Comparison of theoretical and experimentally determined magnitude of the
plane wave mode self pressure reflection coefficient R00.
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Fig. 6.8. Comparison of theoretical and experimentally determined magnitude of the
first mode self pressure reflection coefficient R11.
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Chapter 7

Conclusions and Suggestions For Future Research

7.1 Conclusions

While a lot of research has previously been done on duct acoustics, the literature

has been severely lacking in regards to scattering of higher order modes. This thesis will

help to fill the research gap in regards to rigid walled rectangular ducts.

Throughout the thesis, matrix formalisms are used to solve the resulting sets of

simultaneous equations. The simultaneous equations simplify considerably in matrix

form and take on familiar forms.

In chapter 3 the reflection and transmission coefficients at a step discontinuity

were determined in a straight forward manner through the use of generalized scattering

parameters. By solving the problem in this manner both the expansion and constriction

coefficients are determined at the same time. When written in matrix form, the reflection

coefficient equations take the standard form expected for reflection from an impedance

boundary.

The example problems show that the self modal reflection coefficients vary quite

a bit with frequency, often approaching unity at the cut-off frequencies of higher order

modes. The mutual modal reflection coefficients are shown to be quite high at the cut-

off frequency as well, indicating that modal coupling is significant and important in the

analysis of step discontinuities.
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A more difficult problem, that of a junction, is also handled in a straight forward

manner using generalized scattering parameters in chapter 4. Because the Green’s func-

tion of the junction region is often written as an infinite summation of normal modes,

the problem can be significantly more difficult to solve than the step discontinuity. Us-

ing the matrix form of the equations, the familiar impedance discontinuity form for the

scattering matrix was again obtained.

In the example problems of the right angle bend and the T junction, an infinite

summation from the Green’s function was able to be removed through the use of digamma

functions as shown in appendix A.

The example problems show that the self modal reflection coefficients for a right

angle bend start out at zero, but very quickly rise to large values indicating that a

significant portion of the incident energy is reflected by the bend, even for the plane

wave below the cut-off frequency of the first mode. At and above the cut-off frequency

of a given higher order mode, the transmission coefficient from the plane wave to the

higher order mode is usually more than the plane wave mode self transmission coefficient,

indicating that modal coupling is significant and cannot be ignored in higher frequency

analysis of junctions.

The theoretical solutions for the right angle bend match the experimental results

of Shepherd and Cabelli quite well, with most points within the error of the measurement.

These experimental results verify the junction theory.
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In chapter 5 radiation impedances and reflection coefficients for a duct terminating

in an infinite baffle were derived. Using the matrix formalism the equation for reflec-

tion coefficients was again shown to take the same form as that of a simple impedance

discontinuity.

The graphs of the amplitude of the radiation impedance should not be too sur-

prising - they are quite similar to that found for circular duct. It is important to note

that above the cut-off frequency of the second mode, the coupling coefficient from the

plane wave mode into the second mode is of higher amplitude than the self reflection

coefficient of the plane wave mode. This indicates that modal coupling cannot be ignored

at frequencies where higher order modes can propagate.

It was shown that the plane wave mode radiates omni-directionally at low fre-

quencies and begins beaming at higher frequencies, while the higher order modes radiate

their energy off axis, with the beams getting closer to the axis at higher frequencies.

Equations for the radiated power were derived in terms of the reflection coefficients

of the duct termination. Using those equations eliminates the complicated integration

of the radiated pressure usually required in determining the radiated power.

The method and results of the experiments were discussed in chapter 6. After

deriving the equations describing how the modal amplitudes could be obtained from

the pressure measurements, there was a discussion of measurement techniques and array

types. It was argued that a horizontal array was probably the best method of determining

modal amplitudes.

Some of the limitations of standard measurement and calibration techniques were

discussed. In particular, it was noted that the use of FFT methods in a highly reverberant
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environment is fraught with difficulties and experiments may not be repeatable. The use

of complex swept sine analysis was found to reduce the problem.

Plots of experimentally measured reflection coefficients from an infinite baffled

termination were shown along with the theoretical results. The measured plane wave

reflection coefficient was slightly higher in amplitude than the theoretical curve, but

the shape was correct. The measured amplitude of the reflection coefficient of the first

higher order mode matched the theoretical amplitude very well. The measurement of the

mutual coupling coefficient matched theory fairly well. The shape and level were about

the same as theory, but there was far more variance in the mutual coupling coefficient

measurement than with the self reflection coefficient measurement. The match between

theory and experiment is close enough to verify the theory.

Overall, it is clear that modal coupling cannot be ignored at frequencies where

higher order modes can propagate. Mutual modal coupling coefficients are often higher

in amplitude than the modal self reflection coefficients near the cut-off frequency.

7.2 Suggestions for Future Research

The experimental results obtained for the reflection coefficient were adequate

but not exemplary. The strong standing waves at resonances made taking accurate

measurements difficult, even using the swept sine method. Adding damping to the source

end of the duct to reduce the standing waves would probably improve the measurements.

The damping must be confined to the source end so that the region near the baffled end

of the duct still has rigid walls.
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A knowledge of the approximate error in the measurement would be helpful. The

relative error in the frequency response can be obtained from the coherence function.

The position error can be easily determined. Instead of the simple decomposition al-

gorithm developed in chapter 5, a more complicated algorithm which incorporates the

measurement errors should be used [7]. This would weight measurements with large

error less, and measurements with small errors more. An error bound on the reflection

coefficient computed from the measurements could also be determined.

Because the design of acoustical filters is so important, the method of generalized

parameters could be extended to composite structures. From the generalized parameters

of a cascade of smaller systems, the overall modal response of a system, from input to

output could be determined in a straight forward manner. For example, expansion and

constriction chambers are merely a cascade of two step discontinuities.

Examples of only a few discontinuities were given in the thesis. A more complete

set of scattering coefficients for a number of important discontinuities could be devel-

oped. Handbooks for electro-magnetic waveguides are available which show reflection

and transmission coefficients for a variety of different constructions. With a similar set

of acoustic coefficients the acoustic waveguide designer would be able to quickly choose

the appropriate construct for the desired response.

This thesis derived radiation from a baffled duct. A more difficult and possi-

bly more important problem is to derive expressions for radiation from an unbaffled

duct. Unless a Green’s function for the end of an unbaffled duct can be obtained, the

full Kirchoff-Helmholtz integral will have to be used, resulting in a Fredholm integral

equation which has to be solved. At this time an analytic solution to the problem is
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unknown. Boundary element or finite element methods could be used to numerically

solve the problem to obtain some theoretical results.
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Appendix A

Infinite Summations Using Digamma Functions

Infinite summations of the form
∑∞
n=0

1
n2−z2 or

∑∞
n=0

(1)n

n2−z2 can be rewritten in

terms of the Digamma function [1, 25, 29].

The Digamma function is defined as

Ψ(z) =
d

dz
ln Γ(z). (A.1)

For z 6= −1,−2,−3, ... the Digamma function can be expanded by the series

Ψ(1 + z) = −γ +
∞∑
n=1

z

n(n + z)
(A.2)

where γ = 0.577215... is Euler’s constant.

Ψ(1− z) can be subtracted from the above equation to yield the identity

Ψ(1 + z)−Ψ(1− z) = 2z
∞∑
n=1

1
(n2 − z2)

. (A.3)

The Digamma function, like many transcendental functions has various recurrence

formulae (see [25] p.952-956). In particular

Ψ(1 + z) = Ψ(z) +
1
z

(A.4)
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Ψ(
1
2

+ z) = Ψ(
1
2
− z) + π tan(πz) (A.5)

and

Ψ(1− z) = Ψ(z) + π cot(πz). (A.6)

Subtracting equation A.6 from A.4 yields the identity

Ψ(1 + z)−Ψ(1− z) =
1
z
− π cot(πz). (A.7)

The infinite summation has thus been reduced to a simple equation with well

known functions
∞∑
n=1

1
(n2 − z2)

=
1
2z

[
1
z
− π cot(πz)

]
. (A.8)

The infinite summation in H11
rm in chapter 4 is then

∞∑
n=0

1
Λ(n)(n2 − z2)

= −π

z
cot(πz). (A.9)

An alternating summation can also be written in terms of the Digamma function

since
∞∑
n=0

(−1)n

(n + z)
= β(z) =

1
2

[
ψ(

1 + z

2
)− ψ(

z

2
)
]
. (A.10)

Using partial fraction expansion and equation A.5

∞∑
n=0

(−1)n

(n2 − z2)
=

1
2z

∞∑
n=0

(−1)n

(n− z)
− (−1)n

(n + z)
=

1
4z

[
Ψ(

z

2
)−Ψ(−z

2
)− π tan(π

z

2
)
]
. (A.11)
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The remaining two Ψ functions can be removed by using the recurrence relations

to show

Ψ(−z

2
) = Ψ(1− z

2
)− 2

z
= Ψ(

z

2
) + π cot(π

z

2
). (A.12)

And so finally

∞∑
n=0

(−1)n

(n2 − z2)
=

1
4z

[
2
z
− π tan(π

z

2
)− π cot(π

2
z
)
]
. (A.13)

With this result the summation for H13
rm can be written

∞∑
n=0

(−1)n

Λ(n)(n2 − z2)
= − π

2z

[
tan(π

z

2
) + π cot(π

z

2
)
]
. (A.14)
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Appendix B

Alternate Representation of ZrRM

B.1 Conversion to a Convolution Integral

In chapter 4 it was shown that for a baffled duct the elements of the radiation

impedance matrix are given by the expression

ZrRM =
jkρc

2π

∫∫
S

∫∫
S

ψR(x, y)ψM (x0, y0)
e−jk
√

(x−x0)2+(y−y0)2√
(x− x0)2 + (y − y0)2

dx0dy0dxdy. (B.1)

where ψM (x, y) are the modes of the duct.

Equation B.1 is a four dimensional integral that is often impossible to solve an-

alytically. It can be solved analytically for cylindrical ducts, but not rectangular ducts.

Since the integral is four dimensional and singular whenever x = x0 and y = y0, it may

also be difficult to compute numerically. Using the technique of wavenumber transforms

the integral can be converted into another form which may be computationally easier to

handle.

The Green’s function in B.1, e−jkr/r, is merely a function of the difference in

positions x and x0 and y and y0. The integral over either x and y or x0 and y0 can be

viewed as a convolution integral. To see the convolution integral more clearly, equation
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B.1 can be rewritten

ZrRM =
jkρc

2π

∫∫
S

ψR(x, y)

∫∫
S

ψM (x0, y0)
e−jk
√

(x−x0)2+(y−y0)2√
(x− x0)2 + (y − y0)2

dx0dy0

 dxdy. (B.2)

If ψM (x0, y0) = 0 outside the duct, the term in brackets in equation B.2 is a

convolution integral. Denoting the spatial convolution by ∗ equation B.2 can be rewritten

ZrRM =
jkρc

2π

∫∫
S

ψR(x, y)

ψM (x0, y0) ∗

 e−jk
√

(x−x0)2+(y−y0)2√
(x− x0)2 + (y − y0)2

 dxdy. (B.3)

B.2 Review of Wavenumber Transforms

Just as standard Fourier transforms are a useful tool for analyzing time domain

waveforms, the spatial Fourier transform or wavenumber transform is a useful tool in

analyzing spatial waveforms. In the time domain Fourier transform, time is transformed

into frequency. In the spatial Fourier transform, spatial coordinates are transformed into

wavenumbers, hence the term wavenumber transform.

The forward wavenumber transform is defined as

F (kx, ky, kz, ω) =
∫ ∞∫
−∞

∫
f(x, y, z, ω)e−jkxxe−jkyye−jkzzdxdydz. (B.4)

The inverse wavenumber transform is defined as

f(x, y, z, ω) =
1

(2π)3

∫ ∞∫
−∞

∫
F (kx, ky, kz , ω)ejkxxejkyyejkzzdkxdkydkz. (B.5)
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Just like time domain Fourier transforms, there is a large number of special prop-

erties associated with wavenumber transforms. One of these properties is the convolution

property.

The convolution theorem of wavenumber transforms as stated in Bracewell [8]

states that the wavenumber transform of the convolution of two functions is the product

of their wavenumber transforms. In two dimensions the convolution integral is written

f(x, y) ∗ g(x, y) =
∫∞∫
−∞

f(x′, y′)g(x− x′, y − y′)dx′dy′ (B.6)

=
1

(2π)2

∫∞∫
−∞

F (kx, ky)G(kx, ky)× ejkxxejkyydkxdky. (B.7)

For a baffled duct the Green’s function is G(x− x0, y − y0) = e−jkr/r, where the

distance r =
√

(x− x0)2 + (y − y0)2. The wavenumber transform of the baffled Green’s

function is then

Gk(kx, ky) =
∫∞∫
−∞

e−jk
√

(x−x0)2+(y−y0)2√
(x− x0)2 + (y − y0)2

e−jkxxe−jkyydx0dy0 =
−jejkxxejkyy√
k2 − k2

x − k2
y

. (B.8)

In computing the wavenumber transform of ψM (x, y) it must be noted that

ψM (x, y) is confined to the duct region. It is standard practice to define ψM (x, y) = 0

outside the duct.With this definition the wavenumber transform of of ψM (x, y) is

ΨM (kx, ky) =
∫∞∫
−∞

ψM (x, y)e−jkxxe−jkyydxdy =
∫∫
S

ψM (x, y)e−jkxxe−jkyydxdy. (B.9)
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B.3 Transformation of ZrRM

Using the wavenumber transform for the Green’s function and the convolution

property of wavenumber transforms discussed above, equation B.3 can be rewritten as

ZrRM =
kρc

4π2

∫∫
S

ψR(x, y)

 ∫∞∫
−∞

ΨM (kx, ky)√
k2 − k2

x − k2
y

ejkxxejkyydkxdky

 dxdy (B.10)

where ΨM (kx, ky) is the wavenumber transform of ψM (x, y).

This can be rearranged once again to form

ZrRM =
kρc

4π2

∫∞∫
−∞

ΨM (kx, ky)√
k2 − k2

x − k2
y

 ∫∫
S

ψR(x, y)ejkxxejkyydkxdky

 dxdy. (B.11)

The remaining spatial integral is the same as equation B.9 with kx replace by −kx

and ky replaced by −ky. So, one can replace the spatial integration with ΨM (−kx,−ky)

to yield

ZrRM =
kρc

4π2

∫∞∫
−∞

ΨM (kx, ky)ΨR(−kx,−ky)√
k2 − k2

x − k2
y

ejkxxejkyydkxdky. (B.12)

At this point a finite four dimensional integral which was singular at many points

has been reduced to a two dimensional infinite integral which is also singular at many

points. This may or may not be easier to deal with computationally. But, the integral

can be reduced once again by rewriting it in polar coordinates. The final result is

ZrRM =
kρc

4π2

∫ ∞
0

∫ 2π

0

ΨM (µ cos θ, µ sin θ)ΨR(−µ cos θ,−µ sin θ)√
k2 − µ2

µdµdθ. (B.13)

where kx = µ cos θ and ky = µ sin θ.
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This two dimensional integral is infinite in only one dimension and is singular at

only one point. Depending upon the form of ΨM(kx, ky) equation B.13 may be much

easier to compute than B.1 or B.12.

B.4 Application to a Rectangular Duct

For a rectangular duct the ψM (x, y) = cos(mxπa ) cos(myπb ). In order compute

ZrRM using equations B.12 or B.13 the wavenumber transform ΨM (kx, ky) must be

computed.

ΨM (kx, ky) =
a∫

0

b∫
0

cos(mxπa x) cos(myπb y)√
abΛmxΛmy

e−jkxxe−jkyydxdy. (B.14)

When mxπ
a 6= kx and myπ

b 6= ky

ΨM (kx, ky) =
−kxky[1− (−1)mxe−jkxa][1− (−1)mye−jkyb]√

abΛmxΛmy [(
mxπ
a )2 − k2

x][(
myπ
b )2 − k2

y ]
. (B.15)

When mxπ
a = kx but myπ

b 6= ky

ΨM (kx, ky) =
j
√

aky[1− (−1)mye−jkyb]√
bΛmy [(

myπ
b )2 − k2

y ]
. (B.16)

When mxπ
a 6= kx but myπ

b = ky

ΨM (kx, ky) =
j
√

bkx[1− (−1)mxe−jkxa]√
aΛmx [(

mxπ
a )2 − k2

x]
. (B.17)
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When mxπ
a = kx and myπ

b = ky

ΨM (kx, ky) =
√

ab. (B.18)

As a check one can look at the M = 0, R = 0 term of ZrRM . That term is the

radiation impedance of a of a rectangular piston.

For M = 0 (mx = 0,my = 0) and R = 0 (rx = 0, ry = 0) kM = k and the

wavenumber transform of the mode becomes

Ψ(kx, ky) =
√

abe−jkx
a
2 e−jy

b
2 sinc(kxa/2)(sinc(kyb/2). (B.19)

and equation B.12 becomes

Zr00 =
kρc(ab)

4π2

∫∞∫
−∞

sinc2(kxa/2)sinc2(kyb/2)√
k2 − k2

x − k2
y

dkxdky

=
kρc(ab)

4π2

∫ ∞
0

µdµ√
k2 − µ2

∫ 2π

0
sinc2(

µa cos θ

2
)sinc2(

µb sin θ

2
)dθ. (B.20)

This is very similar to the equation derived by Morse and Ingard [44] in their

development of the the radiation impedance of a square piston. (Morse and Ingard

never explicitly derive the radiation impedance in an exact form. In equation 7.4.43

they derive and expression for the force on the piston in terms of the piston velocity.

The radiation impedance can be obtained by dividing the force by the velocity and the

area of the piston. The resulting equation is the same as B.20. Also note that equation

7.4.43 of [44] is missing a square root over the denominator of the integral.)
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Appendix C

Numerical Integration of ζRM

Recall that for a rectangular duct, the equation for ζRM is

ζRM =
jkρc

2π

a∫
0

b∫
0

a∫
0

b∫
0

cos(mxπa x)√
aΛmx

cos(myπb y)√
bΛmy

cos(mxπa x0)√
aΛmx

cos(myπb y0)√
bΛmy

e−jkr

r
dx0dy0dxdy.

(C.1)

Numerical evaluation of C.1 is not an easy process. While the four dimensional

integral looks straight forward, the integrand is singular, so caution must be taken.

At frequencies low enough for only a few modes to propagate, an approximation

to the integral in equation C.1 can be obtained by discretization of the region into

sub-regions and approximating the integral over each sub-region. Then the integral is

obtained by summation of the portion from each sub-region.

If the end of the duct is broken into a series of rectangular regions of size 2 α by

2 β equation C.1 becomes

ζRM =
jkρc

2π

∑
µ

∑
ν

Iµν (C.2)

where

Iµν =
α∫
−α

β∫
−β

α∫
−α

β∫
−β

ψR(xµ + εx, yµ + εy)ψM (xν + δx, yν + δy)
e−jkr

r
dεxdεydδxdδy. (C.3)
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The integrals in equation C.3 can be approximated for both µ 6= ν and µ = ν.

For µ 6= ν standard Gaussian quadratures can be used to compute the integral

over this sub-region [51].

For µ = ν the integral in equation C.3 is singular. However, the singularity must

be integrable because physically it is known that ζRM is not infinite. The singularity can

be removed by a transformation into polar coordinates, but the resulting integral is still

difficult to do numerically. An alternate change of variables is used by CHIEF, a program

which was written to solve the integral equations resulting from acoustic radiation from

a general vibrating surface [6].

Consider an integral over a rectangular region of the form

I =
uu∫
ul

vu∫
vl

F (u′, v′)du′dv′. (C.4)

The u′− v′ region can be broken into four triangular regions T1, T2, T3, and T4 as

shown in figure C.1.

Then, the integral becomes

I =
∫∫
T1

+
∫∫
T2

+
∫∫
T3

+
∫∫
T4

Fdu′dv′. (C.5)

Assume that the integral is singular at the center of the rectangle, at u′0 = (uu −

ul)/2 and v′0 = (vu − vl)/2.

Consider the following change of variables in region T1:
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u h , v lu l v l,

u h v h,v hu l ,

T3 T4

T1

T2

u’,v’

Fig. C.1. integration of the rectangular region

u = u′ + ξ(
1 + η

2
)(

uu − ul
2

)

v = v′ − (
1 + η

2
)(

vu − vl
2

). (C.6)

The determinate of the Jacobian of the transformation is

|det J | =

∣∣∣∣∣∣∣∣∣
(1+η

2 )(uu−ul2 ) 1
2ξ(uu−ul2 )

0 −1
2(vu−vl2 )

∣∣∣∣∣∣∣∣∣ =
1
16

(uu − ul)(vu − vl)(1 + η). (C.7)

With the change of variable the integral over T1 becomes

∫∫
T1

=
+1∫
−1

+1∫
−1

F (ξ, η)|det J |dξdη. (C.8)
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Although F (ξ, η) still has a singularity at η = −1, |det J | has a zero at η = −1

which cancels the singularity of F .

The integrals over T2, T3, and T4 can be handled in the same manner and the

results can be combined. The final result is

I =
1
16

(uu − ul)(vu − vl)
1∫
−1

1∫
−1

{
(1 + η)[F (u1, v1) + F (u2, v2)]

+(1 + ξ)[F (u3, v3) + F (u4, v4)]
}
dξdη (C.9)

where

u1 = u2 = u′ + ξ(
1 + η

2
)(

uu − ul
2

)

v1 = v′ − (
1 + η

2
)(

vu − vl
2

)

v2 = v′ + (
1 + η

2
)(

vu − vl
2

)

u3 = u′ − (
1 + ξ

2
)(

uu − ul
2

)

u3 = u′ + (
1 + ξ

2
)(

uu − ul
2

)

v3 = v4 = v′ + η(
1 + ξ

2
)(

vu − vl
2

). (C.10)

This integral is non-singular and easier to compute using standard Gaussian

quadratures than had the singularity been removed via the standard polar coordinates

transformation.
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