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,QWURGXFWLRQ

The contemporary history of room acoustics began at the end of the 19|� century, thanks to the
pioneer works by Wallace Clement Sabine [1] , regarding the interpretation of reverberation
processes in large halls. The study, for sure one of the most challenging in acoustics, was car-
ried out inducing the global energetic behavior of the environment from a local analysis of the
sound decay. In practice, Sabine performed several experiments about the decay velocity just by
listening to the sound occurring after having shut a steady source (an organ pipe) off, then he de-
vised the first formula describing the energy decay rate (Sabine formula). This was subsequently
interpreted according to the whole energy balance

T
_�

_|
' �� �@

linking the energy rate of increase to the difference of rates of energy production and absorption
respectively (T is the volume of the environment). The essential point which made this available
was the assumption that the quantity _�*_| is independent of the position  where the decay
is perceived and measured during the reverberation process. In short, the local energy density
�E c |� and the energy density flux �E c |�, are supposed to be homogeneously and isotropically
distributed over the volume T . On the other hand, this statistical assumption, which is referred
to in the literature as the ‘‘diffuse field hypothesis’’, has never been carefully interpreted, so that
nowadays a deep investigation of the relationship between local and global quantities is still
lacking.

In the research area just mentioned the purpose of the present thesis is that of giving a con-
tribution to the development of the analysis of confined fields, both from the theoretical and
experimental viewpoint. First of all, the task will be approached by introducing a proper formal
apparatus for expressing the energy transfer; after that, by the implementation of new intensi-
metric procedures, it will be shown how the local quantities previously defined are related to
the overall structural properties of the acoustic field.

The entire work is subdivided in four chapters: below we summarize the main arguments
treated in each of them.

(1) The most important quantities and physical laws of linear acoustics theory are introduced and
discussed. A particular attention is devoted to the reformulation of energy fluxes in terms of
the radiating and oscillating intensity.

(2) Here a short review of acoustics phenomena characterizing acoustic confined fields is given,
by means of a wave and a statistical treatment. The main original subject which will be
discussed is that of the impulse response technique, employed for obtaining the potential and
the kinetic energy behavior during the sound decay (extension of Schroeder’s method).

(3) The experimental techniques adopted for measuring the energetic quantities are here illus-
trated. These include the standardS�S (pressure-pressure) method for the intensity mea-
surements as well as the cross-correlation procedure for determining pressure and velocity
impulse responses and the convolution procedures (FFT, Hadamard transforms) for recon-
structing stationary signals.

�
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(4) The last part regards the discussion of the results obtained from a set of experiments per-
formed in particular confined fields: an organ pipe, a plexiglass duct and an opera house
(‘‘Teatro Comunale’’ in Ferrara).

It follows a brief appendix, describing some important aspects of the signal processing algo-
rithms used throughout the work.

The original contributions developed by the candidate are presented in Sections 2.5, 2.8, 3.4
and in Chapter 4.
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7KH HTXDWLRQV RI OLQHDU DFRXVWLFV

The phenomenon of sound in fluids (liquids or gases) is due to positive and negative variations
of the medium density with respect to their equilibrium values, which are generated by the action
of the so-called VRXQG VRXUFHV G these may be either rapid compressions and dilatations caused
by vibrating bodies or the intermittent introduction of matter into the medium. In the context we
are about to study, that of OLQHDU DFRXVWLFV in air, the above-mentioned variations are extremely
small, that is not more than �f3D times the equilibrium value. They are related to the behavior of
other hydrodynamic quantities like pressure and velocity, in such a way that the entire process
takes place on a space scale extremely larger than the dimension of a single oscillation: in other
words, the so calledZDYH SURSDJDWLRQ is established in the medium, so that the local perturbation
is transmitted at large distances. The mechanism which makes this possible is founded on two
basic physical properties: (i) the medium HODVWLFLW\, which carries out a relationship between the
fluid’s normal stress (pressure) and its dilatations, (ii) theLQHUWLD � i.e. the property of opposing
a dynamic reaction to an impulse variation.

The most important characteristic of sound propagation from our point of view is that acoustic
pressure variations are associated with a local fluid velocity: this determines a wave energy
transfer inside the medium, which in the linear approximation does not involve any long range
matter movement, thanks to the oscillating behavior of the acoustic quantities.

In this chapter we will present the fundamental features of linear acoustics in fluids, in order
to put the basis for a subsequent understanding of the processes related to the energetic quantities.

��� )OXLG G\QDPLFV IXQGDPHQWDOV
The first task to be treated regards the description of the laws of motion when dealing with
small amplitude sound waves in a non viscous fluid [2] , [3] . A first requirement for this
to be accomplished is the definition of the physical element taking part in the motion. In the

�



� The equations of linear acoustics

usual representation one speaks of a IOXLG SDUWLFOH : this has to be thought as a generic amount
of matter contained in a volume element which is small compared with respect to the ordinary
measurement precision, but sufficiently large to contain a huge number of molecules, in such a
way that the physical quantities inside of it can be considered constant.

����� .LQHPDWLFV

As known, the mathematical representation of fluid motion adopts these two alternative ap-
proaches:

� Lagrangian scheme
� Eulerian scheme

In the /DJUDQJLDQ VFKHPH the particles movement is described with respect to a fixed ref-
erence frame: one defines the position  f of an element at | ' f and follows the motion at
subsequent instants, so tracing the path by means of the curve  ' tE f( |�. On the contrary,
the (XOHULDQ VFKHPH is based upon the description of the fluid motion in each specified point.
Some of the Eulerian quantities we shall encounter are: the sound pressure RE c |�, the particle
velocity �E c |� and the mass density 4E c |�.

It is useful to find out the kinematical relationships linking the two descriptions. For this
we must introduce the Lagrangian velocity by calculating the time derivative of the trajectory
vector: �,E f( |� ' YtE f( |�*Y|. This expresses the velocity at the time | of the particle whose
initial position is  f, therefore, with respect to the Eulerian velocity one finds: �,E f( |� '
� dtE f( |�c |o, so that t satisfies the following Cauchy problem

_ tE|�

_|
' � dtE|�c |o tEf� '  f (1)

From the knowledge of the Eulerian velocity at any point and at any time, one can find the par-
ticles’ trajectories corresponding to every initial point f. Conversely, knowing the trajectories
it is possible to obtain both the Eulerian and the Lagrangian velocity.

As far as the acceleration is concerned, we must take account of the different ways the time
derivative has to be calculated in the two schemes. The Eulerian time derivative of a scalar
function}E c |� is performed in a fixed point, hence

}| G'
Y}E c |�

Y|
'*�4
�<f

}E c | n ��� }E c |�

�
(2)

while the Lagrangian derivative is calculated following the particle trajectory:

�} G'
_}dtE|�c |o

_|
'

Y}

Y|
n
[
�

Y}

Y%�

_r�
_|

'
Y}

Y|
n
[
�

��
Y}

Y%�
' }| n � �Q} (3)

Here the term� �Q} indicates the movement of�_| in the time_|. In particular, the quantity

@,E f( |� '
Y�,E f( |�

Y|
'

Y2tE f( |�

Y|2
' �| n E� �Q�� (4)

is the acceleration of a particle which is in f at time|.
In the present work we shall make use of the Eulerian formulation: thus it will be possible to

deal with acoustical quantities expressed as scalar or vectorial fields.



1.1 Fluid dynamics fundamentals �

����� 0DVV FRQVHUYDWLRQ

We may now introduce the mass conservation equation, which gives a relationship between
density and velocity in a fluid. Let’s first take for simplicity the case of a one dimensional
motion, for instance along the coordinate%, and indicate with4E%c |� and�E%c |� the mass for unit
length and the fluid velocity, both in the Eulerian representation. The mass transfer is expressed
by thePDVV IOX[ GHQVLW\ 6E%c |� G' 4E%c |��E%c |�: the amount of matter which crosses a surface
of unit area normal to% in unit time. Let’s now take a fluid portion inside a volume delimited
by two parallel planes of unit area, placed normally to the motion axis, in the positions% and
% n _% respectively: the corresponding fluxes6E%c |� and6E% n _%c |� determine a gain and
a loss of mass density between the two planes, so that their difference must be equal to the net
variation of mass flux density inside the region. Indicating by4E%c |�^E%c |� the source term
(where^ represents the rate of production or of absorption of mass) this variation is written as
follows

Y4E%c |�

Y|
_% ' 4E%c |�^E%c |�_%�6E%n _%c |� n6E%c |�

therefore
Y4

Y|
' 4^ � Y6

Y%
The last equality expresses the EulerianPDVV FRQVHUYDWLRQ ODZ : a mass increase (decrease) in
a fixed space is caused by a net ingoing (outgoing) flux and/or by an introduction (absorption)
of matter. For obtaining the same law with respect to a point moving with the fluid (Lagrangian
formulation) the termY4*Y| is written as a function of the total derivative (see Eq. (3) in one
dimension):

�4 ' 4^ � 4
Y�

Y%
� �

Y4

Y%
n �

Y4

Y%
' 4^ � 4

Y�

Y%
(5)

The three dimensional generalization is straightforward in both cases: in this case the flux is
given by the vector4 G' 4�, therefore

4| ' 4^ �Q �4 (6)

�4 ' 4^ � 4Q � � (7)

We note that the mass velocity� can be interpreted as the ratio of the mass flux density to the
mass density:� ' 4*4. Moreover, Eq. (7) for̂ ' f can be written

Q � � ' � �4

4
' �_ *L} 4

_|
(8)

from which one realizes that if the trajectories do not diverge, i.e.Q � � ' f, the fluid density
remains constant, if on the contraryQ � � 	f (: f), that is the trajectories are convergent
(divergent), the density increases (decreases) along the path.

����� 7KH (XOHU HTXDWLRQ

The fundamental equation of fluid dynamics is directly derived from the Newton law. Since we
are dealing with small acoustic perturbations in air, we can make the reasonable assumption that
gravity and internal friction are negligible [4] , so that the only effective forces acting on a particle
are the surface ones, due to the pressure exerted by the adjacent fluid portions. Therefore,



� The equations of linear acoustics

considering a volume T , delimited by a surface 7, we have

67 ' �
]
7

_2 R? (9)

where ? is the external normal unit vector of the surface. Applying the divergence theorem to
the three components we obtain the volume integral from the surface one:

i�

]
7

_2 R? '

]
7

_2 REi� � ?� '
]
T

_� Q � Ei�R�' i� �
]
T

_� QR

Remembering Eq. (4) , we get the (XOHU HTXDWLRQ]
T

_� 4

�
Y�

Y|
n E� �Q��

�
'

]
T

_� QR (10)

whose differential form is

�| n E� �Q�� '
QR

4
(11)

First of all we note that this is non linear, owing to the terms E� �Q�� and QR*4; moreover,
the unknown functions are five (�, R, 4) so, even joining the scalar mass equation, we cannot
find a unique set of solutions. Anyway, we’ll see that in the case of perfect gases it is possible
to derive a linear version of Eq. (11) — once some physical conditions are satisfied — as well
as to establish a proportionality relationship among some of the variables: this will allow us to
solve the problem.

Now we may spend some time in finding an alternative formulation of the general Euler
equation, which will turn out to be useful later. For this we suppose the motion isLVHQWURSLF, i.e.
the effects due to the friction and thermal conductivity are negligible, so that the entropy content
of a fluid particle may thought to remain constant along the path; note that this assumption is
well justified in the audible frequency range [4] , which is just the situation we are going to
study.

Let’s introduce the thermodynamical functions:r, �, 0, representing the entropy, the enthalpy
and the internal energy per unit mass. The entropy conservation is expressed by the vanishing
Lagrangian derivative (�r ' f) while the first and second law of thermodynamics for an infini-
tesimal transformation are respectively given by

_0 ' _'� R_T _' ' A_r (12)

where_' is the heat absorbed per unit mass andA the absolute temperature. In our case_r ' f,
hence, expressingT in terms of the density4, one obtains

_0 '
R

42
_4 (13)

On the other hand, the variation of enthalpy (� ' 0n R*4) is

_� ' _0� R

42
_4n

_R

4

Therefore, replacing_0 with the aid of Eq. (13) , we have_� ' _R*4. It follows

QR ' 4Q� (14)
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The Euler equation for an isentropic fluid motion is then

�| n E� �Q�� ' Q� (15)

����� (QHUJ\ DQG PRPHQWXP

The fluid energy per unit volume is

� ' 4

�
�2

2
n 0

�
(16)

where�2*2 and 0 are the kinetic and the internal part. In order to obtain the expression describing
the energy transfer, we must calculate the partial time derivative of �. The kinetic term gives
(using Eqs. (6) and (15) ):

�

2
E4�2�| '

�

2
E�24| n 24� � �|� ' ��

2

2
Q � E4���4� � E� �Q�� � 4� �Q�

' ��
2

2
Q � E4���4� �Q

�
�2

2
n �

�
For the internal term we obtain

E40�| ' 40| n 4|0 '
R

4
4| n 4|0 ' 4|

�
R

4
n 0

�
' ��Q � E4��

where in the second equality we have made use of Eq. (13) , which implies 0| ' R4324|, while
in the last one we have written the definition of enthalpy and used Eq. (6) once again. The sum
of the two terms gives �Q � d4� E�n �2*2�o, so, defining the vector � '4� E�n �2*2�,

�| nQ � � ' f (17)

This is exactly the fluids HQHUJ\ FRQVHUYDWLRQ ODZ. Integrating Eq. (17) in a fixed volume T
and then using the divergence theorem, it follows

_

_|

]
T

_� � ' �
]
7

_2 � � ? (18)

The meaning of Eq. (18) can be simply stated as follows: when the source term is null, the
energy variation in the unit time inside T is equal to the ingoing flux of � through 7. Therefore,
� plays the role of HQHUJ\ IOX[ GHQVLW\ but, unlike the case of the mass equation, where the flux
was equal to the density times velocity, � is now not just equal to ��; yet � '��nR�, from
which:

�| nQ � E��nR�� ' f (19)

In short, �� is the analogous of 4� in the law 4| n Q� E4�� ' f and may be interpreted as a
convection term; on the other hand, R� is the work done by pressure.

The fluid motion produces also a transfer of momentum: its value per unit volume is equal
to the mass density flux4 '4�. With arguments similar to those illustrated above, one may get
a vectorial relation expressing the PRPHQWXP FRQVHUYDWLRQ ODZ :

4| nQ�- ' f (20)



�� The equations of linear acoustics

The flux is now a second order symmetrical tensor which may be decomposed in two parts:
-'Bn�, where B is the FRQYHFWLYH PRPHQWXP IOX[ and � the VWUHVV WHQVRU :

B ' 4

3C �%�% �%�+ �%�5
�+�% �+�+ �+�5
�5�% �5�+ �5�5

4D � '

3C R f f
f R f
f f R

4D (21)

��� 6RXQG LQ SHUIHFW JDVHV
Now we shall deal with the main theoretical topics regarding linear acoustics in perfect gases:
the context where most of sound phenomena perceived by human beings take place. This will
be the background which our work will be built on [2] , [3] .

����� 7KH ZDYH HTXDWLRQ

We may indicate the absence of acoustical perturbations in the medium by means of the equilib-
rium values of the three fundamental quantities: pressure, mass density, fluid velocity (Rf, 4f,
�f); however we shall remember that, in ordinary environmental conditions, the particle velocity
may be thought to be zero, since the motion of the single molecules is of thermal origin.

When an acoustic source, like a vibrating object, produces a perturbation in the medium, the
above mentioned quantities become: R ' Rf n R�, 4 ' 4f n 4�, � ' ��. Eqs. (6) and (11) , in
a region of space not including the source, are then written as follows

E4f n 4��| nQ � dE4f n 4���o ' f

E4f n 4�� E�| n � �Q�� ' �Q ERf n R��

The linear acoustic theory is based on the assumption that pressure and density variations, R� and
4�, are small compared with the corresponding equilibrium values: this allows us to neglect all
the terms of order higher than first in the equations. The result is the following pair of relations:

4�| n 4fQ � � ' f (22)

�| n
QR

4f
' f (23)

which, in contrast to the previous ones, are linear.
Thanks to another basic simplification, this time due to thermodynamics, is then possible to

establish a proportionality relationship between R�and 4�, which represents the empirical phe-
nomenon of the linear dependence between the normal stress and the volume change. The phys-
ical principle accounting for that is the ‘‘Laplace hypothesis’’, for which sound vibration occurs
without any significant heat transfer. From the Fourier equation viewpoint (4A Er| n � �Qr� '
V {A ) the statement is equal to setting the thermal conduction coefficientV to zero, so that the
motion is isentropic, beingr| n � �Qr ' f. In the case of a medium which can be well de-
scribed by a perfect gas, as for instance air at ordinary pressure and temperature (Rf * �fD�@,
Af * �ffk), it follows:

R ' �4� (24)
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where � ' SR*ST is the specific heats ratio and � is a constant. Through a Taylor series expan-
sion limited to first order, one then finds that pressure variations obey the following relationship

R� � _R '

�
YR

Y4

�
r

_4 ' S24� (25)

where the quantity S2, which we will dwell upon in the following section, has the dimensions of
a squared velocity. If in Eq. (22) we replace the expression of 4�from Eq. (25) and differentiate
with respect to time, we have

R||
S2

n 4fQ � �| ' f

from which, writing �| according to Eq. (23) , we get the ZDYH HTXDWLRQ (called also G¶$OHPEHUW
HTXDWLRQ ) for pressure:

{R� R||
S2

' f (26)

It is easy to show that, thanks to Eq. (25) , the same equation holds for mass density as well.

����� 7KH VSHHG RI VRXQG

The form of Eq. (26) tells us that S is the speed of sound propagation in adiabatic conditions.
From Eq. (24) we obtain the equality

S2 '
Y

Y4
�4� ' ��4�3� '

�R

4

which, according to the state equation for perfect gases: R ' 4-A*6@�o (where- ' H��e a !}3�

k3� and 6@�o is the average molecular weight of air), becomes

S2 '
�-A

6@�o

(27)

Dry air is approximately made up of .HI �2 (6�2
' 2H), 2�I �2 (6�2

' �2) and �I �o
(6�o ' ef), hence 6@�o * f�.H� 2Hnf�2�� �2nf�f�� ef * 2b. Moreover, putting � ' ��e
(SR ' ��fH � �f3� a !}3�k3�, ST ' D*.SR), sound speed at A ' �ffk is found to be about
�e. 4 t3�.

����� 7KH YHORFLW\ SRWHQWLDO

If in the linearized Euler equation (Eq. (23) ) we apply the rotor operator to both sides we get
EQ� ��| ' f, for Q�QR ' f: this admits a solution � whose rotor is zero:

Q� � ' f (28)

hence describing an LUURWDWLRQDO motion (not involving any rotation and deformation with change
of shape). One easily verifies from Eq. (22) that in these conditions also the velocity vector
satisfies the wave equation:

{� � �||
S2

' f (29)

Acoustical waves are thus ORQJLWXGLQDO, the particles movement being directed along �. Ac-
cording to Eq. (28) , � itself may be expressed through the gradient of a scalar function �E c |�,
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named YHORFLW\ (or NLQHWLF ) SRWHQWLDO ; as a consequence the Euler equation may be written
QE4f�| n R� ' f, from which one infers that the argument of the gradient is a function of
time only:

4f�| n R ' sE|�

If, through a gauge transformation, the potential is chosen in such a way that s is zero for every
|, we find out that R�, 4�, � may be written as functions of � only:

� ' Q� R� ' �4f�| 4� ' �4f�|
S2

(30)

We also note that the wave equation is fulfilled by the potential too:

{�� �||
S2

' f (31)

so, thanks to Eq. (30) , we shall take Eq. (31) as the reference equation in the formal study of
linear acoustic fields.

����� 6RXUFHV

Now we will realize that the wave equation referred to a region containing the acoustic source
has a non homogeneous form. Actually we may describe the sound origin in two ways: by
means of mass source or by a pressure perturbation. If we focus our attention on the latter case
it is helpful to write the perturbation as a distribution � E c |�; Eq. (23) then becomes

4f�| nQR ' �Q� (32)

Introducing the velocity potential, Eq. (32) is rewritten in the form QE4f�|n Rn� � ' f, as it
has been done in the previous section, � may be chosen in order to make the gradient argument
zero. If we replace � ' Q� into Eq. (22) we get the kinetic potential wave equation with the
source term ^

{�� �||
S2

' ^ ^ '
�|
4fSe

(33)

Now, taking into account Eq. (30) , we obtain the expressions of the source terms appearing in
the wave equations of pressure, density and particle velocity

^R ' ��||
S2

^4 ' ��||
Se

^� '
Q�|
4fS2

(34)

��� (OHPHQWDU\ ILHOGV
Even though in practice it is almost always impossible to determine a solution of the wave
equation describing the physical situation in an exact manner, it is useful to study some ideal
cases; these can in fact be often taken as suitable models for accomplishing an approximate
analysis of the acoustic system. For this reason we will now discuss two important solutions of
the homogenous equation [3] .
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����� 3ODQH ZDYHV

The simplest field is given by the SODQH ZDYH : in a proper reference frame its quantities may
be described as functions of just one spatial coordinate, let’s say%, and of the time|. The wave
equation for plane waves is thus reduced to the one-dimensional form, whose most general
solution is written

�E%c |� ' snE%� S|� n s3E%n S|� (35)

wheresn es3 are two arbitrary functions, which are constant on planes normal to%, representing
a wave traveling at speedS along the positive and negative% respectively. According to Eq. (30)
pressure and velocity are

RE%c |� ' 4fSs
�
n � 4fSs

�

3 ' Rn n R3

�E%c |� ' s �n n s �3 ' Rn*4fS� R3*4fS (36)

For a generic direction, the plane wave solution is written�E c |� ' snE! �  �/|�ns3E! �  n
/|�: in this case the propagation plane is defined by the equation! �  ' SJ?r|� where!, called
ZDYH YHFWRU, satisfies the dispersion law!2S2 ' /2.

In the class of the plane waves an essential role is played byPRQRFKURPDWLF ZDYHV, which in
polar form are written

�E c |� ' �i�E!u 3/|� (37)

Note that� is a complex amplitude, independent of and|.

����� 6SKHULFDO ZDYHV

Spherical waves are characterized by the dependence on a distanceo from a fixed point in space,
calledFHQWHU. Their mathematical expression can be easily obtained writing the wave equation
in spherical coordinates and neglecting the polar and azimuthal angles. The result is

do�Eoc |�ooo '
do�Eoc |�o||

S2
(38)

which is just the d’Alembert equation for the functiono�Eoc |�. According to what we have said
in the previous section a solution of Eq. (38) is of the kind

�Eoc |� '
snEo � S|� n s3Eo n S|�

o
(39)

Therefore the first term represents anRXWJRLQJ wave� propagating from the origin to infinite
distances and with an amplitude decreasing aso3�, the second is theLQJRLQJ term, traveling in
the opposite direction.

For a sinusoidal time dependence the sound pressure and the particle velocity are

REoc |� '
�f

o
id�E&o3/|�o �Eoc |� '

�f

/4fo

�
& � �

o

�
id�E&o3/|�o '

REoc |�

4fS

�
�� �

&o

�
Unlike the case of the plane wave behavior, the phase relationship betweenR and� depends on
a length, through the scale factor&o. It is thus customary to think of a spherical wave as roughly
divided in two regions: theQHDU ILHOG (&o � �), where the velocity component in quadrature
with the pressure dominates, and aIDU ILHOG (&o  �), where the opposite occurs. As we will
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),*85( �� The normal reflection of a plane wave.

see below, this property has remarkable effects on the way how the energy is transferred inside
the field.

��� 7KH ZDYH UHIOHFWLRQ
Up to this point we have focused our attention just on intrinsic properties of the acoustic field:
we have not explained what happens when there are constraints in the environment. This is
by far the most frequent situation encountered in practice: think for instance at the way how
the sound propagates in rooms, where the space available is even finite. This argument will be
treated more extensively in the next chapter; yet, now it is necessary to introduce the general law
of reflection from the wave point of view [4] : this will allow us to understand the main effects
on the energy propagation. The easiest way of doing this is to take into account the reflection of
a plane monochromatic wave on a single surface, which for simplicity is considered perfectly
plane, rigid and of infinite extension, but partially porous. When the wave interacts with the wall
a secondary wave is created in correspondence of the air-wall separation surface. This is called
UHIOHFWHG ZDYH and has a different amplitude, phase and propagation direction, from those of the
direct one. If the incident wave is normal to the surface, let’s say it travels along the direction%
as shown by Fig. 1 its pressure and velocity components are given by

R�E%c |� ' �fi
�E/|3&%� ��E%c |� '

�f

5
i�E/|3&%�

where�f indicates the wave amplitude and5 ' 4fS (FKDUDFWHULVWLF LPSHGDQFH RI DLU ). The
reflected wave is then:

RoE%c |� ' ��fi
�E/|n&%n�� ' F�fi

�E/|n&%� �oE%c |� ' ���f

5
i�E/|n&%n�� ' �F�f

5
i�E/|n&%�

where we have introduced the complexUHIOHFWLRQ FRHIILFLHQW F G' �i�� (f � � � �); the total
field is then the result of anLQWHUIHUHQFH process:R ' R� n Ro, � ' �� n �o (see Eq. (35) ). In
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particular, evaluating the above expressions in the plane given by % ' f:

REfc |� ' �f E� n F� i�/| �Efc |� '
�f

5
E�� F� i�/|

We emphasize three notable cases:

� F ' �: perfectly reflecting surface with impenetrable walls (�Efc |� ' f);
� F ' ��: perfectly reflecting surface with pressure release (REfc |� ' f);
� F ' f: non reflecting surface (REfc |� ' �Efc |�*5).

��� $FRXVWLF HQHUJ\ DQG PRPHQWXP
The theoretical and experimental study of acoustic phenomena is often undertaken with atten-
tion on the energy and momentum carried by the waves. We will now see how to describe the
behavior of these quantities in the linear context, once again with the help of the general laws
of fluid dynamics processes [2] , [3] .

����� 7KH HQHUJ\ FRQVHUYDWLRQ ODZ

Let’s expand the energy� of Eq. (16) in a Taylor series up to second order with respect to the
density perturbation4� ' 4� 4f. As regards the internal energy term, we have:

40 * 4f0f n E4� 4f�

�
YE40�

Y4

�
4'4f

n
�

2
E4� 4f�

2

�
Y2E40�

Y42

�
4'4f

The two derivatives must be calculated at constant entropy: using the relation_� ' _R*4 (Eq.
(14) ) and the definition ofS2 (Eq. (25) ) we find�

YE40�

Y4

�
r

'

�
YE4�� R�

Y4

�
r

' �n 4

�
Y�

Y4

�
r

� S2 ' �n 4

�
Y�

YR

�
r

�
YR

Y4

�
r

� S2 ' �

�
Y2E40�

Y42

�
r

'

�
Y�

YR

�
r

'
S2

4

Replacing4� with R�*S
2 and adding the kinetic term we obtain

� * 4f0f n 4��f n
�

2

R2�
4fS2

n
�

2
4f�

2

The first two terms are unessential from the acoustic point of view: in fact,4f0f is the energy
density of the medium at rest while4��f can be neglected, because its integral on the gas volume
vanishes, meaning that it doesn’t give any global contribution. The final approximatedDFRXVWLF
HQHUJ\ GHQVLW\ �� is then given by the sum of the aNLQHWLF part,4f�2*2, and aSRWHQWLDO (or
compression) part,R2�*E24fS

2�.

�� G'
�

2
4f

�
R2�
52

n �2
�

(40)
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We now may find out the expression of the energy conservation law. Differentiating �� and
writing R� and � by means of Eq. (30) we obtain

��| ' 4f
�R�|R�

52
n �|��

�
' 4f

�
�||�|
S2

nQ�| �Q�

�
(41)

In general � obeys the non-homogeneous wave equation (Eq. (33) ), therefore we may write
�|| ' S2 E{�� ^�. Eq. (41) becomes then

��| ' 4f d�| E{�� ^� nQ�| �Q�o ' �Q� ER��� n R�^

This is usually written

��| nQ � �� ' R�^ (42)

Thus, the role of the vector �� ' R��, called DFRXVWLF LQWHQVLW\, is that of ZDYH HQHUJ\ IOX[
GHQVLW\, while R�^ represents the energy source term, i.e. the space-time distribution of energy
introduced in the environment per unit time.

����� 7KH PRPHQWXP FRQVHUYDWLRQ ODZ

The wave momentum density is 4� ' 4�� (see Sect. 1.1.4): the corresponding conservation
equation is

4�| nQ�[ ' f (43)

where [ is the ZDYH�VWUHVV WHQVRU, representing the ZDYH PRPHQWXP IOX[ GHQVLW\ : this is found
to be [2]

[ ' 4f

3EEEEEEC

�

2

�
�2% � �2+ � �25 n

R2

52

�
�%�+ �%�5

�+�%
�

2

�
�2+ � �25 � �2% n

R2

52

�
�+�5

�5�% �5�+
�

2

�
�25 � �2% � �2+ n

R2

52

�

4FFFFFFD
(44)

It is easy to see that the wave momentum density is proportional to the sound intensity:

4� '
��
S2

(45)

This relation is quite general (for instance it holds for electromagnetic waves if �� indicates the
Poynting vector and S the speed of light) and represents a link between the two conservation
equations (Eqs. (42) and (43) ).

From now on we will exclusively deal with acoustic quantities, hence we can write them
omitting the subscript �.

����� 5DGLDWLRQ SUHVVXUH

Integrating Eq. (43) on a volume T , enclosed by the surface 7, one finds

_

_|

]
T

_� 4 ' �
]
T

_� Q�[ ' �
]
7

_2 [ � ? (46)



1.7 Energy average behavior ��

where the last equality follows from the divergence theorem. Denoting by 4T the momentum
of the wave in T and by 6 the total force, Eq. (46) can be written

_4T

_|
' 6 (47)

which is just the Newton law. From Eq. (47) we can gain a deeper understanding of the tensor
[: in fact, the vector To@_ ' �[ �? is the UDGLDWLRQ SUHVVXUH exerted by the wave on a surface
of normal ?. This is a quite important result, for its shows that the acoustic radiation pressure,
often treated as a nonlinear effect [5] , is present in the linear case as well [6] .

��� (QHUJ\ DYHUDJH EHKDYLRU
We now approach to the main subject of the present work, the study of the average behavior
of acoustic energetic quantities. The averaging procedure we will referred to in the following
of the discussion is expressed in Appendix and appropriate both for deterministic signals and
stationary ergodic processes.

As far as concerns the energy density, the average values of the two components are propor-
tional to the PHDQ VTXDUH SUHVVXUH and PHDQ VTXDUH YHORFLW\ respectively:

`L E � G'
�

2
4f
kR2l
52

`g E � G'
�

2
4f


�2
�

(48)

thus the total energy is of course

` E � G' k�l ' `L n`g '
�

2
4f

�kR2l
52

n


�2
��

(49)

In general `L and `g are not equal: for characterizing their relative magnitude it is useful to
introduce the indicator [10]

j G'
2
s
`L`g

`L n`g

'
2S5
skR2l k�2l

kR2ln 52 k�2l (50)

which is the ratio of the geometric to arithmetic mean of the two energy parts. Note that f �
j � �.

Extremely important is also the average version of Eq. (42) : thanks to k�|l ' f, it reduces
to

Q �� ' kR^l (51)

where we have defined the PHDQ LQWHQVLW\ vector: � E � G' k�l, which can be also interpreted as
the sound power flux density. We can graphically represent the mean intensity vector � E � of a
steady acoustic field by mean of a pattern of SRZHU IOX[ VWUHDPOLQHV : these are built analogously
to the usual streamlines adopted for describing the mass flow in a fluid. In particular, a power
flux streamline is any continuous line across which the mean power flow is zero [7] , [8] .
Actually, in many real situations the time average distribution kR^l is zero everywhere, apart
from a limited region occupied by the source (consider for instance a loudspeaker in a room),
then the most frequent form of Eq. (51) is Q �� ' f. In this case the Gauss’s theorem holds,
meaning that the power flux through a tube formed by a bundle of streamlines is conserved.
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��� 7LPH LQGHSHQGHQW LQWHQVLWLHV
The definition of the mean intensity suggests an important remark. The mean value� is strongly
affected by the time-dependence of RE c |� as compared with that of �E c |�. For instance, if �
vanishes, due to symmetrical oscillations of � around zero, it is clear that � by itself doesn’t
suffice to describe the average energy motion. Our next target will be then that of expressing�
in such a way to evaluate also the part not associated to a net transfer of energy. We begin with
the simplest case.

����� 0RQRFKURPDWLF ILHOGV

The acoustic pressure for a monochromatic field may be written in real form as:

RE c |� ' � E � ULt d�E �� /|o (52)

through the Euler equation the velocity is then given by:

�E c |� '
� E �Q�E �

/4f
ULt d�E �� /|o� Q� E �

/4f
t�? d�E �� /|o (53)

It is evident that� is formed by a sum of a term in phase and one in quadrature with the pressure;
we will indicate these contributions by�R and�^ respectively [9] . The instantaneous intensity
� 'R� itself will then split into two parts:@ 'R�R e h ' R�^, in such a way thatk@l ' � and
khl ' f. In this way we have obtained a simple partition of the flux�, suitable to our purpose:@
represents the term responsible for the net energy transfer andh is the oscillation term. We will
call these two vectors:UDGLDWLQJ LQWHQVLW\ andRVFLOODWLQJ LQWHQVLW\ [19] ; they may be written
in this way:

@ ' 2� dULt E�� /|�o2 h ' + t�? d2 E�� /|�o (54)

where�E � ' � 2Q�*2/4f and+E � ' ��Q�*2/4f.

����� *HQHUDO ILHOGV

When extending the definition of@ andh to the general case of non monochromatic fields,
which in practice is by far the most common one, one has to bear in mind that the concept of
relative phase betweenR and� looses its meaning. We can convince ourselves of this by a simple
example; let’s take a bichromatic field whose pressure is

R ' R� n R2 ' �� ULt d�� � /�|o n �2E � ULt d�2 � /2|o

The velocity is here given by four terms:� ' ��R n ��^ n �2R n �2^, therefore the total instan-
taneous intensity is formed by eight terms; among these the only ones which do not vanish on
average areR���R eR2�2R, while four of the remaining six vanish being products of different fre-
quencies and the other two due to the quadrature relationship between equal frequencies. The
oscillating intensity now depends on the relative phases of the single waves and on the cross
terms given by the superposition of frequencies, so that the partition in terms of the global phase
betweenR and� is no more applicable. We may find a solution to the problem noting that the
term�R in Eq. (53) may be rewritten as

�R '
Q�

/4f
R '

� 2Q�

/4f

R

� 2
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which gives:

�R '
kR�l R
kR2l �^ '

kR2l� ��R

kR2l (55)

The partition of � is now written in such a way that �RE c|� shows the same time dependence of
RE c|� and �^E c |� times R has zero average [12] . Yet, this definition is quite general, and may
be used for any kind of field; therefore we can always write � ' @n h, where:

@ G'R�R '
�R2

kR2l h G'R�^ '
kR2l ���R2

kR2l (56)

from which one finds k@l ' � and khl ' f once again.

����� 7KH SRODUL]DWLRQ WHQVRU

We now discuss the task regarding the quantitative evaluation of ‘‘how much’’ the intensity
oscillates on average. Due to the fact thatkhl ' f by definition, we have to resort to the general
method of second order moments, explained in Appendix (Sect. A.3.1). We start defining the
tensor

�E � G'2 kh
 hl (57)

and subsequently

�E � G'
s
�E � (58)

which expresses theDYHUDJH RVFLOODWLQJ LQWHQVLW\. This allows us to represent the indicatrix
quadric [11] describing the energy oscillation: its equation is given by

^ ��3�
n ^ '� (59)

where�n is the restriction of� to the subspace of the positive eigenvalues. The graphical
rendering of the quadric, which as known may be an ellipsoid, an ellipse or a segment, offers
a remarkable physical interpretation of�: the length, of a generic segment joining the ellip-
soid center with a point on its surface, represents the average amount of flux oscillating along
the direction defined by the segment. In particular, the eigenvalues of�, which are the ellip-
soid’s semiaxes, express this quantity along the three reference axes. We then realize that, when
these are not equal, the oscillating flux may be thought to beSRODUL]HG � One remarkable case
where this happens is given by monochromatic fields we have analyzed in the previous section:
from Eq. (54) we note we are in the case where all the components ofh have the same time
dependence, therefore, according to Eq. (177) , we have

�E � '
+E �
+E �

m+E �m (60)

which has justm+m as a non vanishing eigenvalue, corresponding to the eigenvector+. It follows
that the indicatrix (59) reduces to the segment of length2 m+m directed along+.

The amount of energy oscillating in every direction (effective value of�) is defined intro-
ducing the Hilbert-Schmidt norm of�:

- G' n�n '
s
Ao�2 '

s
2 kh2l (61)
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this is related to � through the general relationship

�2 n-2 '


R2
� 

�2R
�
n 2



R2�2^

�
(62)

In particular, for monochromatic fields one has - ' m+m, since kh2l ' +2*2. Moreover, from
Eqs. (54) and (62) it follows

�2 n-2 '


R2
� 

�2R
�
n 2



R2
� 

�2^
�

(63)

��� (QHUJ\ IOX[HV LQ HOHPHQWDU\ ILHOGV
In this section we will present some computer simulations aimed to give a deeper understanding
of the energy-related quantities behavior in simple field conditions.

����� 3ODQH ZDYH UHIOHFWLRQ

The simplest situation where one encounters the fluxes partition is offered by the interference
field created by a plane monochromatic wave normally reflected by an ideal plane (see Sect.
1.4). It is useful to write the sound pressure in polar form:

RE%c |� ' �f

�
i�E/|3&%� n �i�w i�E/|n&%�

�
' �f

�
i3�&% n � i�wi�&%

�
i�/| ' SE%�i�/|

by simple trigonometric calculations the complex factor SE%� may be written in polar form:
SE%� ' � E%�i��E%�, where:

� E%� ' �f

s
� n �2 n 2� ULtE2&%n w� �E%� ' @hU|@?

� t�?E&%n w�� t�?E&%�

� ULtE&%n w� n ULtE&%�

Therefore, according to Sect. 1.7.1, the intensity contributions R�R and R�^ appear. This case is
particularly interesting because it shows in a simple way how the average energy flux is affected
by the reflection coefficient: for instance, if � ' f there is no reflection at all and the intensity
is completely radiating (SURJUHVVLYH ZDYH ), while if � ' � the intensity is totally oscillating
(VWDQGLQJ ZDYH ). Moreover, in the progressive wave case, being � ' R*5 (see Eq. (36) ), the
following relation holds:

m�m ' `S (64)

As an example we report in Fig. 2 the behavior of the instantaneous intensity in the following
three cases � ' f( f�D( � (s ' �ffO3, w ' f). Subsequently (Fig. 3) the quantities �, @, o for
� ' f�D are shown. The spatial behavior of - is then reported in Fig. 4 (� ' f��( f�S( �). It is
interesting to compare this with the indicator j reported in Fig. 5. Actually, the two quantities
present a similar oscillation pattern (the spatial period is b*2 * ��.4): yet, while - varies
between zero and a maximum which increases with the reflected wave amplitude (note that in a
progressive wave - � f for every %), j behaves in a somewhat opposite way, for its maximum
remains fixed on � and its minimum gradually decreases (in a progressive wave j � �).

From these observations we are led to interpret progressive and standing waves as proto-
types of totally radiating and oscillating fields, respectively: in the former all the mean energy
is transferred by the average intensity vector while in the latter it is completely stored in the
neighborhood of the measuring point. These two extreme cases, which in practice can be ob-
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tained just in an approximate way, define an interval where a variety of intermediate situations
may occur and where, according to the boundary conditions, one of the two parts may prevail.

����� 0RQRSROH ILHOG

To analyze the flux behavior of an outgoing spherically symmetric wave it is useful to perform
the calculations from the potential viewpoint. This function is written �Eoc |� ' sEo�S|�*o (see
Eq. (39) ), hence the pressure and the two particle velocity terms are given by

REoc |� ' 5
s �

o
�REoc |� ' ?

s �

o
�^Eoc |� ' �? s

o2

where s � is the derivative of s with respect to the argument o � S| an ? is the radial unit vector.
We have then

@Eoc |� ' 5?
s �2

o2
hEoc |� ' �5?s

�s

o�

It follows

�E � ' 5?
ks �2l
o2

�E � ' 5

sk2s 2s �2l
o�

?
 ?

Even in this case the tensor � has a single nonvanishing eigenvalue (- ' 5
sk2s 2s �2l*o�)

corresponding to an eigenvector parallel to ?. We may also easily calculate the ratio of the
magnitude of � to the effective value of the oscillating intensity:

m�m
-

'
o

,
(65)

where , G' ks 2l * ks �2l is a sort of characteristic length (in the monochromatic case , ' �*&).
Eq. (65) states that the far field (o : ,) and the near field (o 	 ,) are characterized by the
predominance of the radiating and oscillating intensity respectively.

����� 'LSROH ILHOG

In the examples we have just shown, the oscillating intensity was completely polarized, for the
graphical representation of the indicatrix quadric was a segment. Now we may take a little more
complex field, for exhibiting the phenomenon of energy oscillation in two dimensions. The field
is given by a superposition of two monopoles of different frequency (/ and �/*2) in the plane
%c +:

RE c |� ' �f

�
t�? E& m n  fmn /|�

m n  fm n
t�? d� E& m �  fmn /|� *2 n Zo

m �  fm
�

From a computer simulation, with s ' �ffO3, �f ' �f3e�*4 and  f ' Eb*ec f�, we show
here the quadric representation and the mean intensity vectors in four points of the plane (Figs.
6 and 7). The most interesting characteristic which comes out looking at both figures is the
oscillating intensity polarization along the mean intensity direction.

��� 7KH HQHUJ\ WUDQVIHU LQGLFDWRU
Owing to an analogy between the two conservation laws of mass and energy, which is based on
the formal correspondences 4' �, 4' �, we can introduce the instantaneous HQHUJ\ YHORFLW\,
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defined as the ratio of intensity and energy density [12] :

�.E c |� G'
�E c|�

�E c|�
'

2S5R�

52�2 n R2
(66)

It can be easily shown that m�.m � S: in particular the equality holds when the instantaneous
kinetic and potential energies are equal.

For studying the average behavior of the energy velocity we have two possibilities. The first
and most obvious one is given by the quantityNE � ' k�.l, which represents the PHDQ YHORFLW\
RI VRXQG HQHUJ\ ; on the other hand, we may also define the ratio

�E � G'
�E �

` E �
(67)

which can be interpreted as the YHORFLW\ RI HQHUJ\ WUDQVIHUUHG E\ WKH DYHUDJH LQWHQVLW\. The two
averages obviously lead to different results: for instance �E � (which will be called X YHORFLW\ )
has the same direction of � while in general this is not true of N. The particular averaging rule
introduced in Eq. (67) makes the calculation of the X velocity quite advantageous compared to
N. In particular, we may verify the following relationship

m�m � Sj � S (68)

where j has been defined in Eq. (50) . The first inequality is due to

m�m'
t
kR2l �k�2l � 
�2R�� �skR2l k�2l

while the second one is a direct consequence of the inequality E@� K�2 � f, with @2 ' 52 k�2l
and K ' kR2l. Moreover from Eq. (68) one finds that the joint conditions: - ' f (vanishing
oscillating intensity) and 52 k�2l ' kR2l (i.e. j ' �, that is `g ' `L ) are equivalent to the
condition m�m ' S: in particular, this happens for a plane progressive wave (see Eq. (64) ).

We now present an argument displaying a deeper physical meaning of the X velocity, and
allowing us to use this quantity as an important field indicator. To this purpose we have to come
back to the spherical wave field considered in Sect. 1.8.2 and calculate both the potential and
the kinetic energy:

�LEoc |� '
�

2
4f
s �2

o2
�gEoc |� '

�

2o2
4f

�
s � � s

o

�2

For obtaining the time averages, we first calculate the quantity

kss �l ' *�4
A<"

�

2A

] A

3A

_| sEo � S|�s �Eo � S|�

putting 1 ' o � S| and integrating by parts, we have

kss �l ' � *�4
A<"

�

2SA

] onSA

o3SA

_1 sE1�s �E1� ' � *�4
A<"

�

eSA

�
s 2 Eo n SA �� s 2 Eo � SA �

�
' f

whence it follows

` '
�

2
4f

�
2 ks �2l
o2

n
ks 2l
oe

�
(69)
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The X velocity modulus becomes then

m�m ' S
2o2

2o2 n ,2
(70)

which approaches f or � when o � , or o  , respectively. Stated another way: at distances o
large compared with , (far field) the relationship between pressure and velocity approaches that
of a plane progressive wave. In fact, here the fluid velocity has the same temporal behavior of
the pressure and, how it is clearly shown by Eq. (69) , all the energy density is radiating and
moves at speed S. On the contrary, if we come nearer to the source, there appears an additional
term (proportional to ks 2l) which is not present in �: this can be interpreted as an oscillating
energy term which does not radiate outward but is locally stored [2] .

Thanks to these arguments we may generalize the concept defining the indicator

# '
m�m
S

(71)

which, in addition of being the modulus of the X velocity in units of S, may be interpreted as the
fraction of the mean energy which is radiated at the speed of sound.



&+$37(5 �

$FRXVWLFV RI FRQILQHG ILHOGV

We have examined the general physical laws of linear acoustic systems, disregarding almost
completely the study of phenomena which take place when the field is bound, that is when
the sound propagation occurs in presence of walls or other obstacles. The only question we
have presented about this issue has been the simplified treatment of the general phenomena of
reflection, where in particular we have realized the influence of the wave interference on the
energy propagation.

It’s obvious that almost always the task of determining the spatial and temporal distribution
of acoustical quantities cannot be achieved exactly, due to the huge complexity exhibited by
most real confined fields; for this reason a variety of approaches is often employed, each of
them being reliable just at a certain level of approximation. The most typical and exact one is
based on the direct study of the d’Alembert equation (ZDYH DFRXVWLFV ) and gives fundamental
information about normal modes of vibration and their relationships with transient sounds in a
closed environment. On the other hand, when wavelengths are much smaller than the typical
dimension of the room other approaches, likeJHRPHWULFDO andVWDWLVWLFDO DFRXVWLFV, are more
helpful for describing the propagation and transmission of sound, though in a more approximate
way.

The models we have just mentioned constitute the framework where the study of room acoustics
problems is most frequently performed. In this section we are going to discuss their main the-
oretical aspects, for gaining a better understanding of the concrete cases we will later discuss
from an experimental viewpoint.

��� ,QWURGXFWLRQ WR WKH ZDYH WKHRU\
When the typical room dimensions are of the order of a few wavelengths the only correct way
of interpreting the sound propagation is the one based on the direct study of the wave equation,

��



2.1 Introduction to the wave theory ��

which in general takes account of a source term:

{�E c |�� �||E c |�

S2
' rE c |� (72)

It is often useful to transform the equation by means of the Fourier integral: this often simplifies
the procedure for solving it and offers the possibility of studying the acoustic system from the
frequency viewpoint. For this purpose we are going to adopt the following convention for the
Fourier transform:

xE c /� '

] "

3"

_| �E c |�e3�/| �E c |� '
�

2Z

] "

3"

_/xE c /�e�/| (73)

Eq. (72) becomes then �
{n

/2

S2

�
xE c /� ' 7E c /� (74)

which is called +HOPKROW] HTXDWLRQ : / is here a parameter, playing the role of an eigenvalue
when 7 ' f. Note that in the usual time domain the same problem arises considering a steady
harmonic excitation rE c |� ' ^E �i3�/f|. Thanks to linearity properties also the field is sepa-
rated in the same way (�E c |� ' kE �i3�/f|), the time phasor i3�/f| can then be dropped, so
that just a spatial equation remains.

In general, the walls bounding an enclosure interact with the field, therefore a strict procedure
for determining the acoustic field should be based on the coupling of the wave equation with
the set of equations describing the wall movements produced by the air vibration. This situation
is very difficult to deal with, but fortunately it is often possible to devise a simplified boundary
condition model, which may be quite helpful in practice.

����� 6SHFLILF LPSHGDQFH

If the walls are rigid but penetrable, the interaction can be mathematically represented by a linear
relation between the velocity component normal to the surface (P) and the sound pressure in the
same point [4] :

~E �?E � � �E c |� ' RE c|� (75)

(with  5P and ? being the external unity vector normal to the surface). The proportionality
factor ~ is a complex number called VSHFLILF DFRXVWLF LPSHGDQFH � whose real and imaginary
parts are respectively called VSHFLILF DFRXVWLF UHVLVWDQFH and UHDFWDQFH. Generally this quantity
depends on the frequency and the direction of incidence as well as the position. Written in terms
of the potential, Eq. (75) becomes

~E �?E � �Q�E c |� ' �4f�|E c |� E 5P� (76)

which is just a ERXQGDU\ FRQGLWLRQ for the wave equation. In the frequency domain it is written

~E �?E � �QxE c/� ' ��/4fxE c /� E 5P� (77)

Now, remembering the previous brief discussion about the plane wave reflection (Sect. 1.4),
it is evident that there is a strong relationship between ~ and the reflection coefficient F: in
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particular, we obtain

~ ' 5
� n F
�� F (78)

The three extreme cases F ' �, F ' f, F ' �� then correspond to: m~m '4 , ~ ' 5, ~ ' f.
It is worth noting that the specific impedance is an extension to the acoustic case of the analog

quantity defined in vibrational mechanics and in electrodynamics.

����� (QHUJ\ DEVRUSWLRQ

It’s worth analyzing the different cases where the energy absorption is absent. Let’s suppose
the field is a monochromatic one, so that pressure and velocity may be written in polar form as
RE c|� ' � E �i3�&| and�E c |� ' VE �i3�&|: Eq. (75) becomes

~E �T?E � ' � E � (79)

where� andT? ' V � ? are evaluated on the boundary surface. The following table summarizes
all the situations where the perfect reflection occurs.

+iE~� '4 and/orW4E~� '4 T?'f
+iE~� ' f andW4E~� 9' f T? and� in quadrature
+iE~� ' f andW4E~� ' f � ' f

On the other hand, the mean normal intensity over the boundary is given by

�?E � ' kRE c|��?E c|�l ' �

2
+i d� E �T W

? E �o '
�

2
mT?E �m2+i d~E �o (80)

which confirms the fact that if the resistance isf the energy is not absorbed. It’s also clear that
for intensity to be positive, in order that energy escapes from the enclosure (passive surfaces),
the resistance has to be defined as a non negative number.

In the case of the normal reflection of a plane progressive wave, Eq. (80) may be written

�?E � '
�

25
m�fm2

�
�� mFm2� (81)

Since the termm�fm2 *25 represents the incident mean intensity, while the same quantity times
mFm2 gives the intensity related to the reflected wave, Eq. (81) expresses the energy conservation
law at the boundary surface. It is then customary to callmFm2 HQHUJ\ UHIOHFWLRQ FRHIILFLHQW, and
contemporarily define the quantityk ' ��mFm2, representing theHQHUJ\ DEVRUSWLRQ FRHIILFLHQW.

��� 6RXQG LQ GXFWV
To introduce some examples where the wave treatment of sound is employed, we will discuss the
transmission insideZDYHJXLGHV and in finite ducts with partially absorbing ends. The analysis
will be carried out focusing the attention on the homogeneous problem in the frequency domain,
in order to investigate the relationship between the eigenfunctions of the Helmholtz equation and
the boundary conditions [4] .
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����� :DYHJXLGHV

Let’s consider a semi-infinite straight duct of constant section, aligned along% (f � % 	 4)
and having perfectly reflecting walls. For simplicity we will consider here the case whereT? '
? �Q� is f on the surfaceP. In order to study the solutions in the frequency domain we define
the following eigenvalue problem for the Laplacian operator:;?=

�
{n

/2

S2

�
xE c/� ' f

? �QxE c /� ' f E 5P�
(82)

where we suppose that the surfaceP is formed by the four planes of equations+ ' f, + ' ,+
(f � 5 � ,5), 5 ' f, 5 ' ,5 (f � + � ,+).

It is helpful to look for a solution having the axial variable% separated from the others.
Dropping the frequency dependence in the notation we assume

xE%c +c 5� ' fE%�[E+c 5� (83)

as a consequence, we obtain a transversal equation and an axial equation:�
{+5nk2

�
[ ' f (84)

f �� n
�
&2 � k2

�
f ' f (85)

where&2 ' /2*S2. In the first case[ andk are eigenfunctions and eigenvalues of a two-
dimensional Helmholtz equation corresponding to reflecting walls: thek2 are then non negative
real numbers taking a discrete set of valuesk2

?, and the corresponding[? form a complete
orthonormal set of functions

k2
? ' Z2

%�
?+
,+

�2

n

�
?5
,5

�2
&

[?E+c 5� ' gE?+c ?5� ULt
?+Z+

,+
ULt

?5Z5

,5
(86)

wheregE?+c ?5� are normalization constants.
The general solution of Eq. (85) depends on the eigenvaluek2

? in two possible ways

f?E%� ' �i�q?% q? '

� s
&2 � k2

? if &2 : k2
?

�
s

k2
? � &2 if k2

? : &2
(87)

We are now able to write explicitly the solution of the spatial componentx in the two cases:

xE%c +c 5� ' �i�q?%[?E+c 5� xE%c +c 5� ' �i3�q?�%[?E+c 5� (88)

The second case differs from the first one because it describes an excitation dying out exponen-
tially along the axis%. Two kinds of modes are then present inside the duct: theSURSDJDWLQJ
PRGHV, defined fork2

? 	 &2 and being finite in number, and theHYDQHVFHQW PRGHV, which can-
not propagate. Among the first ones there is the so-calledIXQGDPHQWDO PRGH, corresponding to
k? ' f, which is a plane wave without any transversal excitation. We are then led to the con-
clusion that a given frequency/ excites more than one mode, but among these the only ones
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being able to propagate will be those for which / is greater than the FXWRII IUHTXHQF\ /? ' Sk?.
Furthermore, if / is so low that / 	 Sk? for each ? : f, the only propagating mode will be
the fundamental one: for instance, in the particular case of square section duct the propagation
inside will occur in the form of plane waves whenever

/ 	 /f '
SZ

,
(89)

where , is the side of the square. The condition expressed by Eq. (89) is obviously equivalent
to , 	 b*2.

����� )LQLWH OHQJWK GXFWV

Now we consider a finite length duct in a frequency range satisfying Eq. (89) and with both ends
having an impedance~. Due to the plane wave nature, the acoustic quantities may be considered
functions of just the axial coordinate (%), therefore the system may be taken as a simple example
of one dimensional room for it gives us the opportunity of finding the relationship between the
modes’ behavior and the wall impedance.

The problem we have to solve is

x��E%� n
/2

S2
xE%� ' f

�
~x�Ef�� �/4fxEf� ' f
~x�Eu� n �/4fxEu� ' f

whereu represents the duct length. The general solution of the equation isxE%� ' @i�E/*S�% n
Ki3�E/*S�% which must be inserted into the boundary conditions in order to find the constants@
andK. The result is the following system�

E~ � 5�@� E~ n 5�K ' f
i�E/*S�uE~ n 5�K� i3�E/*S�uE~ � 5�K ' f

The condition for a non trivial solution is then

i32�E/*S�u '

�
~ n 5

~ � 5

�2

(90)

The calculation of& may be accomplished by distinguishing two physical situations.

3HUIHFWO\ UHIOHFWLQJ ZDOOV

In this context~ must satisfy one of the three conditions indicated in the table above (Sect.
2.1.2): it is then easy to verify that the quantity on the right-hand side of Eq. (90) has unit
magnitude. It follows that/ forms a discrete set of real numbers. In particular, in the first and
third case (� ' f or T? ' f) we obtainULtE2/u*S�� � t�?E2/u*S� ' �, so

/? '
?ZS

u
? ' fc	�c	2 � � � (91)

The eigenfunctions are thus expressed by

x?E%� ' i�E/?*S�% n i3�E/?*S�%

and it can easily be demonstrated that they are not orthogonal, the boundary conditions being
dependent on the eigenvalue; therefore, it is not possible to express the general solution as an
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infinite series using x?E%�. Anyway, from the particular solutions of the homogeneous problem,
which may be written

xE%c /� ' BE/ � /?�x?E%�

it is possible to deduce some interesting properties through the transformation in the time do-
main. From Eq. (73) we then obtain

�?E%c |� '
�

2Z

] "

3"

_/BE/ � /?�x?E%�i
�/| '

x?E%�

2Z
i�/?| (92)

which is a standing wave of angular frequency /?. It is thus clear that in this systems the sound
doesn’t need any power to be sustained, for the solution of the homogeneous problem doesn’t
show a transient behavior. By the discussion presented in Sect. A.2 we can infer that the Green
function is not finite, meaning that the system cannot be considered stable. We’ll come back to
this subject below, when speaking about Green functions in detail.

3DUWLDOO\ DEVRUELQJ ZDOOV

In this case~ is a complex number, so/ must be a complex number too: let’s write it/ ' h/n��.
It follows

i2��u dULtE2h/u*S�� � t�?E2h/u*S�o ' �~ n 5

~ � 5

�2

from which, putting for simplicityW4E~� ' f, we have

h/? '
?ZS

u
� '

�

2u

�
~ n 5

~ � 5

�2

(93)

� is positive and independent of?, but we can write/? ' h/? n ��? all the same, because
in general~ is implicitly dependent on frequency;�? has then asymptotic behaviors given by
*�4~<5 �? '4 (maximum absorption) and*�4~<" �? ' f (zero absorption). The eigenfunc-
tions are

x?E%� ' E~ n 5�i�E/?*S�% n E~ � 5�i3�E/?*S�%

corresponding to

�?E%c |� ' x?E%�i
�/?|i3E�?*S�| (94)

We now see how absorption affects the time behavior of eigenfunctions: these decrease expo-
nentially with the slope�? ' S*�?. In fact, this is a first simple example of the phenomenon of
the decay of sound, which will be treated in more detail in the following.

��� 6ROXWLRQV LQ WHUPV RI *UHHQ IXQFWLRQV
We now want to deal with the resolution of the wave equation when an acoustic source is present:
for this we will rely on the Green function method, whose theoretical foundations are presented
in Appendix. The first point we need to discuss now is the extension to the space-time domain
of the concepts introduced for time-invariant dynamic systems.

Referring to Sect. 2.1, we can affirm there are two ways of defining Green functions in linear
acoustics. The first one is related to the usual wave equation and is employed for determining
fields of generic time behavior. The second one is a special case regarding the time independent
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wave equation (Helmholtz equation) and can be directly interpreted as the Green function for
obtaining the space distribution of simple-harmonic fields. Anyway, as shown above, the two
formulations are linked to each other by the Fourier transform.

In the first case we have to find the space-time behavior of a field �E c |�, produced by the
source distribution rE c |�, in such a way that the wave equation is

{�� �||
S2

' r (95)

The source has then to be subdivided into an ensemble of elementary terms being point-like
in space and impulsive in time. The Green function }E c |� represents the field observed in
position  at time | due to one of these elementary sources. Of course, the simplest case is the
one encountered in free space, where the function satisfies Eq. (95) with rE c |� ' BE �BE|�
and no boundary conditions. It can be demonstrated [13] that the Green function satisfying the
causality condition is

}E c |� ' � S

eZm mBEm m � S|� (96)

which is an impulsive spherical outgoing wave, traveling at speed S. The global field, called
GHOD\HG SRWHQWLDO, is obtained by means of a space-time convolution

�E c |� ' Er � }� E c|� ' � �

eZS

]
-�

_�)
rE)c |� m � )m*S�

m � )m (97)

Nevertheless, if boundary conditions are present, the field has to be written

�E c |� '

]
T

_�)

] |

3"

_� }E c)( |� � �rE)c �� (98)

so that we can no more speak of convolution because the translational invariance in space has
disappeared. } now depends on the impulse position and must satisfy the boundary conditions:
it is defined by the equation

{ }E c)c |�� }||E c)( |�

S2
' BE � )�BE|� }E c)( | 	 f� ' f

As regards the Helmholtz equation, the Green function C is the solution of�
{ n

/2

S2

�
CE ()� ' BE � )� (99)

In the most general case, the space distribution xE � of the field �E c |� ' xE �i�/|, produced
by the excitation rE c |� ' 7E �i�/|, is given by

xE � '

]
T

_�)CE ()�7E)� (100)

which in the free space becomes

xE � ' EC � 7�E � (101)

Now we examine a particular case allowing us to simplify the way how � is written. Let us
suppose the source distribution is separable in the form

rE c |� ' kE �qE|� (102)
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We then have

�E c |� '

] |
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_� qE��
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_�) }E c)( |� � �kE)� '

] |
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_� }kE ( |� ��qE�� ' }k � q

that is a temporal convolution between the time part of r and the spatial integral expressed by:

}kE c |� '

]
T

_�) }E c)( |�kE)� (103)

The result is obvious if we think of the equation with the source term rE c |� ' kE �BE|�,
whose solution is just }k, which can be then interpreted as a kind of Green function valid for
fixed spatial dependence. One meaningful case, often useful in practice, is encountered when
kE � 'BE �  f�: this gives }BE ( |� ' }E c f( |�.

��� *UHHQ IXQFWLRQV LQ URRPV
In this section we are going to present a brief discussion about Green functions in rooms provided
with absorbing walls, both from the point of view of harmonic and general fields; we anticipate
we are not aiming at an exhaustive treatment of the subject: further details and more precise
explanations may be found on specialistic works [14] , [3] .

����� +HOPKROW] HTXDWLRQ

We are going to express the Green function by a series of orthonormal eigenfunctions inside the
region where the equation is defined. In practice, these come out by the problem;?=

�
{n

l2

S2

�
xE (/� ' f  5 T

~E �?E � �QxE (/� ' ��/4fxE (/�  5 P
(104)

where the frequency in the equation has been given a value different from that in the boundary
condition, in order to find a complete set of orthogonal eigenfunctions [?; hence, / has to be
regarded as a parameter, whose value may be given by the driving frequency of a sound source,
so that l? are the /-dependent eigenvalue. The general solution of Eq. (104) is then given by

xE � '
"[
?'f

s?[?E � s? '

]
T

_ xE �[?E �

where the frequency dependence has been omitted. Let’s now take into consideration the homo-
geneous problem (74) and expand the source term7

7E � '
"[
?'f

r?[?E � r? '

]
T

_ 7E �[?E �

If we know ther? we can obtain thes? substituting the two series expansions into the equation.
We get:
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?'f

s?

�
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/2

S2
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[? '

"[
?'f

r?[?
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and because of Eq. (104)
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?'f

s?

�
/2

S2
� l2

?

S2

�
[? '

"[
?'f

r?[?

We have

s? '
S2r?

/2 �l2
?

The Green function is given by 7E � ' BE � )� so that r? ' [?E)�; we then have

CE c)(/� ' S2
"[
?'f

[?E (/�[?E)(/�

/2 �l2
?E/�

(105)

where in general the eigenvalue l? is a complex number, meaning that energy absorption occurs
at the boundary. If the acoustic system is driven by a source rE c |� ' ^E �i3�/f| the solution of
the wave equation is then

�/fE c|� '

#
S2

"[
?'f

[?E (/f�

/2
f � l2

?E/f�

]
T

_�)[?E)(/f�^E �

$
i3�/f| (106)

The function �/f , as well C, is singular when the implicit equation /2
f ' l2

?E/f� is satisfied,
that is when the eigenvalue problem expressed by Eq. (104) is solved maintaining the equality
between the frequency appearing in the equation and that of the boundary condition (as it has
been done in Sect. 2.2.2 for the one dimensional case); in this case, the eigenvalues are /? 'h/? n ��?. Therefore, if �? ' f (no absorption), C has poles on the real axis and as the driving
frequency / approaches one of the h/?, the corresponding amplitude tends to diverge; on the
contrary, if �? 9' f the amplitude is high but not infinite. For this reason the h/? are usually
called: HLJHQIUHTXHQFLHV RI WKH URRP.

����� 7LPH GHSHQGHQW ZDYH HTXDWLRQ

The Green function for determining fields with any time dependence is obtained applying the
inverse Fourier transform to Eq. (105) . This is calculated by means of the UHVLGXHV WKHRUHP and
turns out to be

}E c)( |� '

;A?A=
f | 	 fu

Z

2
S2
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?'f

e3�?| W4

�
[?E (/�[?E)(/�h/?

i3�h/?|
�

| � f
(107)

Remembering that the Green function is the response to an impulsive source, we can now realize
the physical meaning of the coefficient �?: the higher �? is (i.e. the higher the absorption)
the faster is the decay of the corresponding modal vibration in the impulse. Therefore, it is
reasonable to name this quantity GDPSLQJ FRQVWDQW. Thus, we can now better explain also the
short remark we have made in Sect. 2.2.2 about sound decay . Let us suppose the room be excited
by a stationary signal switched off at | ' f and having, for simplicity, a point-like extension:

rE c|� '

�
BE �  f�qE|� | 	 f
f | � f



2.5 Impulse responses and convolutions ��

Referring to the Eq. (98) , we have

�E c |� '
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_� i�?� W4
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[?E (/�[?E f(/�h/?

i3�h/?E|3��
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(108)

which shows that all the eigenfrequencies appear in the transient response observed soon after
| ' f, each of them decaying with its own particular damping constant �?. The process we have
just introduced, probably the most important phenomenon of room acoustics, is usually called
UHYHUEHUDWLRQ.

��� ,PSXOVH UHVSRQVHV DQG FRQYROXWLRQV
Now we are going to learn how to employ the Green function method when dealing with the
acoustic quantities R and � rather than �. First we shall show that the manner of writing these
by means of a relation analogous to Eq. (98) is twofold. For instance, if we make use of Eq.
(30) we get the two relations:
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_� h}RE c)( |� � �rE)c �� (109)

Hence, with respect to Eq. (98) , the source term r remains the same, while the potential’s Green
function } is replaced byh}� ' Q } andh}R ' �4f}|: these are not the Green functions ofR
and� respectively, but just the pressure and velocity corresponding to an impulsive excitation
of the kinetic potential�. Yet, this fact is not surprising, since aB-source for the kinetic potential
doesn’t generate aB also forR and�, as shown by Eq. (34) .

An alternative way of writingR can be obtained changing the integration variable from� to
|� ' |� � in Eq. (98) : this makes the time derivative to act onr instead of}. The result is:

RE c |� '
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_|�}E c)c |�� d�4fr|E)( |� |��o '

]
T

_�)

] |

3"

_� }E c)( |� � �rRE)c ��

(110)
where in the second equality we have used Eq. (30) . Thanks to the source termrR we can
interpret Eq. (110) as the analogous of Eq. (98) in the pressure domain, which we could have
there obtained simply by takingR instead of�. The fact that the Green function is the same
in the two relations is justified if we consider that in both cases} is the solution of the wave
equation with source term equal toBE � )�BE|� and the same boundary conditions: in fact,�
must satisfy the relation~E �?E � �Q�E c |� ' �4f�|E c |�, which can be written

�~E �?E � � �
4f

] |

3"

_�QRE c�� ' RE c |�
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Taking the time derivative, this becomes:

~E �?E � �QRE c |� ' �4fR|E c |�
that is the same condition with R in place of �.

Velocity comes out from the Euler equation (Eq. (23) ) with R given by Eq. (110) :
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Being }E| � f� ' f for the causality principle, we can write:
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where in the last equality we have made the substitution |�� ' |� � � . Since the integral in |��

differs from zero only if |� � � f, we obtain:
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Defining the function

}�E c)c |� ' � �

4f

] |

f

_� Q }E c)( �� | � f (112)

Eq. (111) may be rewritten as

�E c|� '
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_� }�E c)c |� � �rRE)c �� (113)

In short, we have expressed the velocity vector through a relation resembling Eq. (110) for the
pressure; a remarkable fact to be noticed is that Eq. (113) combines the pressure excitation rR
with the function }�, which can be thought of as the velocity response produced by a pressure
impulsive source. In the following of our discussion we will often refer to Eqs. (110) and (113)
, it is thus practical to call } and }� SUHVVXUH LPSXOVH UHVSRQVH and YHORFLW\ LPSXOVH UHVSRQVH
respectively, at any rate remembering that the latter does not represent a Green function for �.

��� *HRPHWULF�VWDWLVWLFDO WUHDWPHQW RI UHYHUEHUDWLRQ
We will now focus the attention on the study of the sound reverberation adopting a method
completely different from the one adopted in the previous treatment, where the process was
explained in terms of decaying modes. In fact, the wave approach has to be employed when
the sound wavelength is not too small with respect to the room spatial dimensions: if this is
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not the case, as it sometimes happens, the modal density increases too much and the number of
resonances becomes so large that this theory is no more useful. It is clear that in this condition
it is not possible to give an exact representation of acoustical phenomena: as we are going to
see, the only thing one can do is to invoke a geometric-statistical model for obtaining a rough
quantitative evaluation of the physical quantities [15] .

The situation where an approximation to the wave theory is needed, occurs when, due to the
multiple reflections from the walls, the sound field is given by a superposition of a large number
of plane waves traveling in all directions. Let’s take for simplicity the single frequency case:
the total pressure and velocity amplitudes in each point may then be given by
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where?E)c i� ' dt�?i ULt)c t�?i t�?)c ULtio andeRE ()c i� is the complex amplitude of a
single wave, which depends on the direction),i as well as on the position. We now want to
find the mean intensity and the mean energy density: limiting the latter to the potential part for
simplicity, we have:
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where (simplifying the integral notation by putting
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In such a kind of fields the behavior of the physical quantities is properly described in an approx-
imate way by means ofORFDO VSDWLDO DYHUDJHV (l.s.a.), i.e. averages computed over a volume
with dimensions substantially larger than the typical wavelength, but much smaller than those
of the whole room. We may indicate the l.s.a. operation on a generic quantity�E � byuE��E �,
where the dependence on now refers to the position of the elementary integration volume in
the room. If we now calculate the l.s.a. of Eqs. (117) and (118) we may assume that due to the
oscillatory terms the integrand is nonvanishing just for?E)c i� ' ?E)�c i�� i.e. for) ' )� and
i ' i�. We then have�
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the l.s.a of energy and intensity are given by the integral of the l.s.a of the energiesmeRm2 *4fS2 and
intensitiesmeRm2 *4fS corresponding to the single waves. Therefore, the l.s.a. picture shows that
in a short wavelength field where multiple reflections occur, it can be assumed that the sound
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energies and intensities of the wave packets can be simply added together, so that any diffraction
or interference effect can be simply neglected. Therefore, the sound field can be geometrically
approximated by a large number of superimposed UD\V traveling at speed S along straight lines
in all possible directions: in practice, waves behave as they were LQFRKHUHQW packets without
a definite phase relationship. For this reason, we can omit the explicit indication of l.s.a. and
define the angular distributions of sound energy and intensity as

_`

_l
' �?

_�

_l
' ? S�? (119)

where �? ' u
�meRm2� *4fS2.

����� 'LIIXVH VRXQG ILHOGV

In order to develop a geometric interpretation of the sound decay process we have to make
a fundamental assumption: the sound rays have to be distributed so much at random that the
quantity �? is a constant independent of  , ) and i. As a consequence, also the mean energy
density is independent of  , so that ` ' eZ� and the power incident on any unit area is a
constant as well; in particular, this is found to be isotropic, in the sense that it does not depend
on the plane orientation. Its value is given by
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A field satisfying the above property is said to be GLIIXVH.
As regards the way energy is absorbed at the walls boundary, according to the laws of re-

flection which we have previously explained, it is customary to quantify this by means of the
coefficient k, i.e. the fraction of incident acoustic power absorbed by the surface; in general,
this depends on the position, the incidence angle i and the sound frequency.

����� 0HDQ IUHH SDWK

From the concept of sound particle one may develop a model for explaining reverberation using
elementary calculations of statistical mechanics. The first quantity we are going to introduce is
that of PHDQ IUHH SDWK of an acoustic ray in a room. Let us take a particle which undergoes �
wall reflections in a time interval |: its mean free path is given by

6 '
S|

�
'

S

?
(120)

where ? is the average number of reflections per second. Since 6 and ? are time average values
referred to a single particle we ask ourselves how to pass to a picture where all the particles are
taken into account. The answer to the question is immediate if the field behaves in a diffuse
way: in this case, the particle-wall interactions don’t follow a deterministic law (e.g. the Snell
law); on the contrary, the process determines a non predictable change in the particle direction.
Hence, the reflection anglei, measured with respect to a straight line normal to the surface,
may be expressed by a probability density function� Ei�, so that

U
lf

_l� Ei� represents the
probability of a particle to be reflected intolf. The assumption that� Ei� is independent of the
incident angleif is well-founded when the walls have irregularities whose size is roughly equal
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to the wavelength: in this case, the sound reflection does not follow the law we have described
in Sect. 1.4 but it occurs through a multiplicity of scattering processes.

� Ei� is usually taken equal to the so-called /DPEHUW¶V FRVLQH ODZ

� Ei� '
ULti

Z
(121)

Due to Eq. (121) we can then affirm that after the reflection a particle loses its individuality
because its previous history does not affect its new trajectory; as a consequence, the time average
of the paths of one single particle is fully indistinguishable from the average calculated over the
all ensemble of particle paths: stated another way, the particle paths ensemble is treated as an
ergodic stochastic process. In this framework it is possible to calculate the mean free path by
averaging the connecting segment oEic � on the whole reflection angle and on the enclosure
surface 7.
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the inner integral is the double of the room volume, since its integrand is the volume of the
infinitesimal cylinder of height o and basis _ ULti. It follows

6 '
eT

7
(122)

which is a remarkable results, because it depends just on the geometrical parameters of the room.
By Eq. (120) we then obtain ? ' S7*eT .

����� (\ULQJ¶V GHFD\ ODZ

Using the concepts illustrated in the two following sections we now report a simple deduction
of the energy decay law, which is appropriate when the field may be considered diffuse. Let
us suppose for simplicity that the boundary consist of two parts only, having area 7� and 72

and absorption coefficients k�and k2 respectively, both independent of position and angle of
incidence. Thanks to diffuseness, the energy flows equally in every direction and subsequent
wall reflections are stochastically independent of each other, so that the ratios 7�*7 and 72*7,
where 7 ' 7�n72, express the probability of hitting the two surfaces. We may take one particle
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and follow the path covered over � reflections: if this is reflected �� times by the first wall
and � ��� from the second one, its energy will be given by

`�E��� ' `fE�� k��
��E�� k2�

�3��

while the probability for this to happen is obtained from the binomial distribution
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We may now take the expectation value of the energy: the results is
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where we have defined the average absorption coefficient hk ' E7�k� n 72k2� *7. In the last
expression we may now explicit the time using Eq. (120) , with 6 given by Eq. (122) . The
result, which represents the time dependent ensemble average of the decaying global energy in
the room, is the well-known (\ULQJ¶V GHFD\ IRUPXOD

` E|� ' `fE�� hk�S7|*eT ' `fi
3|*� (123)

where � ' �eT
S7
* *?E��hk�. We have thus realized that the geometrical treatment of reverberation

foresees an exponential decay with a single value of the slope (� ). In particular, we note that
� decreases when the absorption increases, approaching 4 when hk $ �. In practice, it is
customary to characterize the decay slope by defining the quantity ASf ' S� *? �f (UHYHUEHUDWLRQ
WLPH ), which is the time required for energy to reach a millionth of its initial value:

` EASf�

`f

' �f3S (124)

��� 6RXQG GHFD\ DQG HQHUJ\ WUDQVIHU
In the wave and statistical theory of room acoustics we have just discussed, the reverberation
process was explained in terms of the relationship between the sound field and the boundary
properties: in both cases a simplified representation was given, in order to easily account for
the effects of sound reflection. These approaches are useful insofar as they allow us to obtain
an approximate decay law and to find its relationship to the structural characteristics of the
environment. In particular, from the wave theory one gains a correct understanding of the field
behavior �E c |� in very simple environmental situations; while the statistical treatment is based
on a model which may be useful when dealing with complicate sound field patterns where the
typical wavelength is small compared to the reflecting obstacles in the room. Anyway, the
interpretation of the phenomenon does not really involve the fundamental physical law on which
it is based, that is the energy conservation equation. In fact, this viewpoint is somewhat adopted
just when in the geometrical description of sound absorption one makes the hypothesis that the
reflected sound particles transmit to the wall a fraction of their energy; furthermore, the model
becomes less obvious when the energy loss is supposed to depend on the parameter hk, whose
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physical meaning is not simply related to the one inferred in the case of a single plane wave
reflection on a perfectly rigid and flat surface, which is the only system for which one can give
a clear definition of absorption coefficient.

We may now try to give a better explanation of the phenomenon using the concepts we have
introduced when speaking about the energy propagation. Let us consider a room of volume T
and surface 7 where the space-time distribution of sound energy is given by �E c |�; the time
dependent global energy will be

.E|� '

]
T

_� �E c |� (125)

If in T there are sound sources emitting at a constant power, the global energy in the room
has a constant value, which is due to the equilibrium condition between the amount of energy
introduced and the one absorbed. In fact, this is exactly the meaning of the average formulation
of the non homogeneous energy conservation equation (Eq. (51) ).

Let us suppose the excitation be switched off at | ' f, so that the energy starts to decrease.
In general the decay rate is time dependent. It is calculated differentiating Eq. (125)
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(126)

where in the third equality the energy conservation law has been used. This relation tells us that
the time rate of change of the energy inside T is equal to the energy which escapes through 7
in unit time. An important quantity we may calculate without any statistical or boundary hy-
pothesis is the decay velocity relative to the initial energy soon after | ' f. Indicating the initial
elementary time interval by {| the quantity is expressed by >f ' � d.E{|�� .Ef�o *.Ef�{|
and replacing the incremental ratio by the derivative of Eq. (126) :
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where we have defined the volume and surface averages respectively of energy density and in-
tensity (d8 o7 '

U
7
_2 8 E c |� *7, d8 oT '

U
T
_� 8 E c |� *T ). Now we can make the statistical

hypothesis that if for | 	 f the excitation is a random stationary signal, the respective �E c |�
and �E c |� are both stationary ergodic processes until | ' f. In this condition the whole study
is better performed from the ensemble averages viewpoint:
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(128)

Where in the first equality we have expressed the ensemble averages of �E c f� and �E c f�,
which have been then replaced by the corresponding time averages for | 	 f. We have then
realized that the initial decay rate is inversely proportional to the characteristic length of the
environment (T*7) and directly proportional to the ratio of mean intensity surface average to
the mean energy density volume average. It is worth noting that when the acoustic system is
such that the decay law is exponential (like foreseen by the diffuse field model) the parameter
>f corresponds to �3� and does not depend on the time interval on which it is evaluated.
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As far as concerns the possibility of experimentally checking the above relation, we must
stress that in principle the task is quite hard, for it would require an extended measurement of the
energy density and the intensity all over the space and on the surfaces of the room respectively.
Nevertheless, it is sometimes possible to gain an insight into the relationship of the sound decay
process with respect to the energy absorption if measurements are performed locally: in fact, if
we look at Eq. (128) , we note that this parameter shows a sort of resemblance with the local
indicator #E � ' �E �*S` E � introduced in the first chapter. Remembering that the latter is
defined as the energy fraction of mean energy density locally radiating outward in consequence
of the average intensity�, it can be inferred that its value in a point of the space far enough from
the source (in such a way the near field effects are negligible), is somewhat physically linked
to the amount of energy which is absorbed at the boundary. In order to verify this, in the last
chapter of this work we are going to present a series of simple experiments performed on some
test fields, where the total energy decay and the most significant energy related quantities during
a stationary excitation, among which the # parameter, have been measured.

We conclude this discussion by saying that a local investigation of the transient properties of
sound fields is extremely useful mostly from a practical point of view, since a global description
is often not suited in those situations where it is necessary to understand the process on a local
basis. This may for instance happen when one wants to consider the energy decay just in the
point where the listener is placed.

��� 7UDQVLHQW HQHUJ\ DQG LPSXOVH UHVSRQVHV
Now we are about to explain a fundamental relationship between the impulse response of a
system and the ensemble average of a sound signal produced by a broad band excitation: we
will see that through this relation it will be possible to undertake the local study of a transient
field in an empirical manner, both during the rise and the fall of the signal. This principle was
originally introduced by M. Schroeder in the mid Sixties and implemented for determining the
decay curve of squared pressure [16] : here, we are going to show that the same reasoning holds
for the squared velocity and the sound intensity as well.

Let us suppose that a generic environment be excited by a source which, for the sake of sim-
plicity, is taken separable as described by Eq. (102) ; let us also indicate its temporal dependence
by rE|�. A quantity �, like the pressure R or one of the velocity components, in a certain point
of the space, will be given by the convolution:

�E|� ' } � r '
] |

3"

_|� }E|� |��rE|�� (129)

where the spatial dependence has been omitted for briefness, while } indicates the impulse re-
sponse related to �.

As a first case, let us assume that the stimulus signal be interrupted at | ' f after a stationary
excitation, and calculate the quantity �2 for | � f:
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If the above-mentioned signal is an ergodic broad band white noise (that is with a constant
spectral density), a description of the process free of random fluctuations is obtained taking the
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ensemble average of Eq. (130) . It follows
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where the second equality holds thanks to the property of white noise: �rE|� ' BE|�. It is then
clear that from pressure and velocity impulse responses one can go back to the decay curve of
the total energy �E|� occurring after having switched off a stationary broad band source. A
remarkable fact to be emphasized, which makes �E|� suitable for expressing the energy decay,
is the fact that this quantity is a monotonic decreasing function, as shown by its first derivative:
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The statistical evolution of the intensity vector �E|� is given in an equally simple manner: it
suffices to multiply RE|� and �E|� (| � f), both written in terms of their impulse responses

�E|� ' RE|��E|� '

] "
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_� }RE��}�E� � (132)

Note that now the curves are not in general monotonic, since }R and the components of }� not
always have the same sign.

Reasoning in an analogous way, one can realize what happens if the excitation is switched on
at | ' f and goes on infinitely. In this case the starting point is the relation
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and the final result is given by
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In short, this gives us the possibility of calculating the energy also during the rise following the
start of the signal. Of course, the time derivative will now be positive.

We also immediately find out the following symmetry relationship between the two transient
quantities

�2o�reE|� ' M2
f � �2_eSE|� (134)

where M2
f '

U"
f

_� d}E� �o2 may be interpreted as the asymptotic value reached during the sta-
tionary excitation. For figuring this out in another way, we may think of sending to the environ-
ment the same excitation r used before, this time keeping it steady. The squared value of � is
then
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If the process is ergodic the time average coincides with the ensemble average (see Appendix);
it follows:
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0HDVXUHPHQW WHFKQLTXHV

We now intend to discuss the practical methods which may be used for measuring the energetic
parameters we have previously defined. The first subject to be treated will be that of the inten-
sity measurements: in this context we will focus our attention mainly on the explanation of the
current techniques, both from the transduction principle and the hardware viewpoint. Then, we
will deal with the measurement of the other fundamental quantity we have met in the theoret-
ical exposition, that is the impulse response. In particular, after having illustrated the general
methods (cross-correlation algorithms), which are usually adopted for obtaining responses re-
lated to pressure signals, we will explain how these can be easily employed for measuring also
the velocity impulse responses. The devised procedure has two main applications: the first one
concerns the possibility of performing energy decay studies involving also the kinetic term, the
second one is related to an improvement of the above mentioned intensity measurements. In
fact, nowadays the traditional intensimetry is almost exclusively based on the determination of
the so-called DFWLYH LQWHQVLW\ kR�l, which actually coincides with the quantity we have named
average radiating intensity; as regards the study of oscillating fluxes, the several attempts made
in order to define a measurable quantity, being significant from a physical point of view, has not
given satisfactory results up to now: for instance, the concept of UHDFWLYH LQWHQVLW\, defined as
the imaginary part of the complex intensity �SE%� ' �

2
RE%��WE%�, can be interpreted as an oscilla-

tion term just for monochromatic fields [17] , [18] , [19] . In order to make up for this drawback
we will see how to implement an indirect measurement of our oscillating intensity: the proce-
dure is based on the ‘‘reconstruction’’ of the sound field by means of the convolution between
excitation signals and impulse responses.

��
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��� 7KH FRQGHQVHU PLFURSKRQH
Before dealing with the intensity measurement technique, it will be useful to dwell upon the most
important element for acquiring acoustic signals, both in a standard and in a research context. We
are referring to the microphone, an electroacoustic transducer able to convert sound vibrations
into electric signals. Here we will deal just with the condenser microphone, since this is the type
usually employed for building the most common intensimetric probes [20] .

The transduction element of this microphone is given by a condenser with plane and parallel
faces, kept at a constant charge (let’s say'f) by an external voltage (typically of the order of
2ff V). One of the two faces, called diaphragm, consists of a thin metal layer (some>4 thick)
exposed outside in order to receive the sound pressure oscillations of the nearby field. The entire
structure is usually enclosed in a cylindrical capsule as shown by the figure below.

The mechanical vibrations occurring due to the sound pressure variations change the rest
distance(f between the two faces, so that the condenser’s capacity is changed; therefore, a
series of voltage oscillations arises at the two condenser ends, the amplitude of these being
linearly dependent on the distance variations_. In fact

T � ' 'f ', ETf n ��
0f7

(f n _
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0f7
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', � ' Tf

_

(f
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where� is the condenser capacity and� is the voltage fluctuation with respect to the equilibrium
valueTf. It is interesting to note that being(f quite small, about2f>4, the internal field
may reach a very high value, that is about�f !V*44, which is more or less three times the
dielectric strength of air: nevertheless, the small distance itself prevents the ion cascade so that
no discharge takes place.

An important parameter characterizing the microphone performance is theVHQVLWLYLW\, that is
the voltage amplitude corresponding to a given acoustic pressure: it is measured inV*�@ (or
in _� relative to�V*�@) and usually varies between�V*�@ and�ff>V*�@. The sensitivity
is inversely proportional to the mechanical tension of the diaphragm and directly proportional
to its diameter: for instance, the standard microphones of diameter��2. U4 (�*2��) andf�Se U4
(�*e��)� commonly used for intensity measurements, have sensitivities of the order of�2 and
S4V*�@ respectively.

It is obvious that by means of a single microphone one may perform measurements on just
the potential part of the acoustic field energy.



3.2 Intensity measurements ��

��� ,QWHQVLW\ PHDVXUHPHQWV
From the instantaneous intensity expression (� 'R�) one easily understands that an ideal mea-
surement instrument would require, besides a pressure transducer, a device able to detect the par-
ticle velocity. Actually, there exists a kind of probe directly implementing this principle, called
S �Y �pressure-velocity): it is constituted by a microphone for pressure measurements coupled
to an ultrasound transducer for � [7] . Anyway, this technique is not very practical, because the
probe, being sensitive to the air turbulence along with the sound pressure, has to be carefully
protected by a proper shield, which sometimes may produce some unwanted refraction effects.
On the contrary, the most common intensimetric technique employs the S�S (pressure-pressure)
principle; this is based on the processing of signals coming from an array of microphones. Since
we shall make a large use of this method, we now intend to explain its working principles in some
details.

Let us consider a one dimensional field: the Euler equation may be written as follows
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If the frequency is not too high, it is possible to approximate the derivative by an incremental
ratio. Therefore
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where in the second equality we have written R�E|� for RE% n _%c |�, R2E|� for RE%c |� and _ for
_%. In practice, one can measure the signals R� and R2 by means of two condenser microphones
placed at a distance _ apart, then perform the time integral and finally obtain the approximate
velocity component along the direction defined by the axis joining the two transducer centers. It
is customary to refer the value given by Eq. (138) to the mid point between the two microphones:
the corresponding pressure is given by the spatial average

RE|� * R�E|� n R2E|�

2
(139)

The approximate instantaneous intensity is then obtained multiplying the above two quantities:

�E|� ' RE|��E|� '
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����� 2XWOLQH RI PHDVXUHPHQW HUURUV

We now want to discuss the main sources of systematic errors intervening in the intensity mea-
surements performed with the S�S technique.
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)LQLWH GLIIHUHQFH DSSUR[LPDWLRQ

The first inaccuracy related to the measurement of R and � is obviously due to the way how Eqs.
(138) and (139) are obtained, which is commonly called ILQLWH GLIIHUHQFH DSSUR[LPDWLRQ. In
particular, if the pressure gradient varies rapidly with respect to the two microphones distance,
the velocity estimate from the incremental ratio becomes inadequate. The error size depends
mostly on the type of the field which is being measured and on the probe orientation inside
it, therefore it is not possible to give an absolute evaluation of the measurement correctness
valid in all cases: anyway, following a rough but reasonable rule, we can say that the smaller is
the transducers distance with regard to the wavelength, the more the measurement is accurate.
A rigorous way for showing this is that of expanding in a Taylor series, with respect to the
parameter &_� �, the pressure field which a known field would produce in the two points. As
an example, we here report the expansion for a plane progressive monochromatic field, dropping
for briefness the detailed calculations. Following Fahy, the expansion is done with respect to &�
(� ' _*2). The results for R, � and � are
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These relations confirm that the error is reduced by decreasing the microphones distance: for
example, one may find that the conditions for the three normalized errors to be less than DI
(�f *L}E� n e� ' �f�2 _�) are: &_ 	 f�SS, ���, f�DD. An analogous result is obtained for a
plane wave interference field.

From these considerations one might think that the best result would be achieved reducing
the microphones distance to the minimum; unfortunately, there is an another systematic effect
which prevents us from doing this.

3KDVH PLVPDWFK

In addition to the inaccuracy introduced by the approximated gradient, which is an unavoidable
intrinsic effect due to the measurement principle, there is a source of error which is caused by the
hardware itself: it is the SKDVH PLVPDWFK which arises between the two signals due to both the
transducers and the readout system. A first condition to be satisfied for this to be low is that the
probe is built employing a pair of microphones having similar phase responses. Nevertheless,
phase discrepancy cannot be completely removed in this way, for it depends strongly from the
analyzer channels as well: further expedients are then required. The following example will be
of help for focusing the issue: let us consider a monochromatic field, with pressure given by
RE c |� ' � E � ULt d�E �� /|o, and call �o the real phase difference between two points distant
_ apart (_ � b). It may be easily seen that this quantity depends on the field itself and on the
direction ? of the line joining the two points with respect to the wave front normal Q�: for
example, in a plane progressive wave, �o varies between a maximum equal to &_ (& ' /*S)
and a minimum equal to zero, when performing a rotation of bf� about the propagation axis of
the wave; on the other hand, if the orientation is kept fixed, �o vanishes also when the field
becomes a perfect standing wave. To consider a specific case, let us suppose that the field be
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a plane progressive stationary wave: the approximate mean intensity along ?, calculated from
Eq. (140) , is given by
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where we have made use of the relations kR�R�|l ' f and kR�R2|l ' �kR2R�|l, due to stationarity
(the proof follows on integrating by parts). Besides, if the wave is monochromatic, we can write
R�E|� ' �� ULt E�� � /|�, R2E|� ' �2 ULt E�2 � /|� and �o ' �� � �2 ' &_. Then, Eq. (141)
becomes
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(where Uf ' ���2*24fS). Now, let us suppose the phase mismatch error be w: the above relation
will be

�6 ' Uf
t�? E&_n w�

&_
so that, if &_� �, we evaluate the relative error by the ratio
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from which we see that the discrepancy due to a fixed w increases when &_ decreases, that is
when the microphone spacing is small with respect to the wavelength. A typical phase error
encountered in practice is of the order of f���, this means that when for instance s ' �ffO3
and _ ' D U4 (which, as we are going to see, is on of the standard spacer lengths), ew is of the
order of 2I.

When measurements are done in critical field conditions, that is in quasi-standing waves
(�o � &_) or extremely low frequencies, besides using an appropriate spacer, it may be nec-
essary to adopt a more effective method for limiting the phase discrepancy. By this technique,
called SUREH UHYHUVDO [21] , the mean intensity is measured two times: the first one along one
direction and the second one after having changed by �Hf� the orientation of the probe, in order
to change the phase difference from �o to ��o. The two results (�6n, �63) are
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In this way, taking the half-difference of the two values one can obtain a good evaluation to the
average intensity
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����� 3UREHV FRQILJXUDWLRQ DQG VLJQDOV UHDGRXW

Intensity probes are built by mounting from one to three pairs of microphones on a single support,
depending on the number of dimensions one wants to study; for 3D measurements the three axes
are normal to each other in order to measure the particle velocity components in a Cartesian
frame of reference. We emphasize that each pair is a one dimensional probe and therefore must
be constituted by two microphones of amplitude and phase responses as similar as possible.
These are arranged in such a way as to minimize the diffraction effects: the most common
configurations, depicted in Fig. 8, are called IDFH�WR�IDFH and VLGH�E\�VLGH. As regards the
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),*85( �� The two most common microphones’ configuration in the intensity probes.

microphones distance, we have to keep in mind that, as previously explained, an optimal phase
coupling and a low finite difference approximation error lead to opposite solutions; therefore,
this important parameter must be chosen in order to reach a satisfactory compromise between
the two needs. The distances into the probes we are going to use in our experiments (the%U�HO 	
.M U ���� and ����, reported in Figs. 9 and 10) are generally set, by means of proper spacers, to
D and ��2 U4. This allows us to perform measurements with an accuracy of the order of	 � _�
(relative to �f3�2`*42) into the two frequency ranges: ���DO3���2D !O3 and �2DO3�D !O3
[22] .

The electrical signals produced by the probe microphones have to be transferred to some
device able to analyze them; yet, they are first sent to proper preamplifiers for changing their
impedance, due to the fact that the microphones output capacity (variable from about � to .f T6,
depending on the diaphragm’s diameter) is not sufficiently small compared to the impedance of
the chain formed by cables and the readout system (- � ��l, � � Df T6). The microphone
capsules are thus directly connected to the preamplifiers, which contain the condensers power
supply too.

The next step regards the signals elaboration for obtaining sound pressure, particle velocity
and finally their time average product. Actually, there are two methods for accomplishing this.
In one case the Euler equation (see Eq. (138) ) is directly implemented in the time domain (as
it is done for instance by the intensity analyzers%	. ���� and���� ), so that after having
obtainedR and� their product is calculated according to Eq. (140) . The other method works
in the frequency domain (e.g.2QRVRNNL &) ��� ): it is based on an indirect spectral analysis
of the intensity performed by means of the FFT ()DVW )RXULHU 7UDQVIRUP ) of the probe signals.
The basic relation implemented is�E/� ' W4 dCR2R� E/�o *4f/r, whereCR2R� is the one-sided
cross-spectrum ofR2 andR�.

In both cases the results are presented by means of spectra, but with an important difference:
in the first case data are shown inFRQVWDQW SHUFHQWDJH EDQGV, i.e. the amplitude distribution is
composed of values referred to adjacent frequency bands (like octaves or third-octaves), whose
width is such that the ratio of the upper to the lower frequency is constant; in the second case the
distribution is obtained in the form ofFRQVWDQW EDQGV : here levels are referred to equal frequency
intervals, whose width depends on the signal sampling rate.

As an example of the first type, the block diagram of the%	. ���� analyzer is reported in
Fig. 11. It is arranged in three main parts: signal conversion, elaboration and averaging. In the
first stage the input signals are amplified and, after having been sampled and quantized through
two ADC modules, they are sent to a digital filter bank (e.g. one third-octave). Afterwards the
sum and difference operations of signals are performed; in particular the pressure difference is
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),*85( �� The %	. ���� 1D intensity probe (mic. diam.: 4=5: fp), provided with two different spacers.

integrated and normalized in order to obtain the particle velocity signal, subsequently multiplied
by the middle pressure for obtaining the instantaneous intensity. In the last stage the averages
are then calculated and displayed.

An essential operation to be done before any measurement series is the channels calibra-
tion. Its purpose is twofold: firstly it compensates the inevitable sensitivity differences between
channels (due both to the microphones and to the acquisition line), then it gives the possibility
to display the final results in physical units or in levels (_�) referred to proper reference values
(2��f3D�@ for pressure, D��f3H4*t for velocity and �f3�2`*42 for intensity). The calibra-
tion can be done in a variety of ways: the simplest one is achieved by sending to each channel a
signal with a known pressure, through a sound generator called SLVWRQSKRQH ; by a special pro-
cedure implemented in the analyzer the corresponding sensitivity (�@ vs. V) is then stored and
subsequently used for converting the acquired signal into the correct units.

��� ,PSXOVH UHVSRQVHV
From the theoretical treatment of the previous chapter we have realized that the impulse response
has a twofold relevance. Let us first spend a few words about its most immediate application:
that of the energy decay study, achieved making use of the fundamental relationship between the
signal ensemble average and the squared impulse time integration. We underline that this was
introduced as an effective method for removing the typical drawbacks of the direct investigation
technique, which is based on the direct measurement of the signal (sound pressure) after a steady
excitation (e.g. a white noise) [15] . The decay curves so obtained are often of little help, due
to the fact they are not monotonic: as a matter of fact a plenty of oscillations, caused by the
instantaneous wavefronts passages, are superimposed on a rough decreasing behavior. This
stochastic-like property often makes the decay parameters calculation (e.g. the reverberation
time or the early decay time) quite hard to perform, due to the difficulty encountered when trying
to fit the curve. On the contrary, the Schroeder’s method does not suffer from this limitation,
since the ensemble average obtained integrating the impulse response eliminates any random
fluctuation. Moreover, as we have previously illustrated, the same technique can be extended to
get the kinetic energy decay too, which is a quite important feature from a physical viewpoint:
in fact, the kinetic term is usually neglected in a practical context; nevertheless, no experimental
evidences supporting the assumption of the equivalence between its behavior and that of the
potential term, have ever been found.
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),*85( ��� Scketch of the %	. ���� 3D intensity probe (mic. diam. 3=97 fp).

We then emphasize the other important use which the impulse response may employed for.
This is the indirect study of stationary parameters, which is made available by the acoustic field
reconstruction through convolution algorithms, in accordance with the theory exposed in Chap.
2. We will treat the practical details of the procedure after having explained the experimental
technique for measuring impulse responses.

����� 0DLQ SULQFLSOHV

In the past, pressure impulse response measurements were done using real acoustic impulses,
as the ones produced by gun shots or by loudspeakers excited by short and high voltages [15] .
Although very practical, this technique is characterized by some serious disadvantages: one of
these is the high crest factor of the impulsive signal, for which a high excitation energy, indis-
pensable for maintaining the signal-to-noise ratio at an adequate level, is concentrated in a very
short time. When using an electroacoustic source, this can lead to bad distortions compromis-
ing the linearity of the system: an improvement may be given reducing the frequency range by
means of filters or using, instead of a crude impulse, a sinusoidal signal delimited by a particu-
lar envelope (like a Hanning, Hamming or a pseudo-Gaussian window). This method is based
on the general principle for which increasing the signal length, and as a consequence spreading
the excitation energy on a longer time interval, is tantamount to decreasing the frequency band.

A more recent method makes use of the cross-correlation properties between input and output
of a linear system excited by a white noise. With respect to the previous one, this is much more
effective because it allows us to measure indirectly a response arbitrarily large in frequency,
without using an impulsive excitation. To see how it works, let us again consider the general
convolution expression for a time invariant linear system
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here r� and rJ are the input and output signals respectively. Now let us calculate the cross-
correlation between r� and rJ, supposing these are random stationary ergodic processes (see
Appendix)
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),*85( ��� Block diagram of the %	. ���� real time intensity analyzer.

performing the substitution: + ' | n � � |�, which implies |� ' | n � � + and _|� ' �_+, we
have:
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this gives:
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which tells us that the cross-correlation between input and output is given by the convolution
between the system impulse response and the auto-correlation of the input. If we use a white
noise as the input, thanks to the property ��E|� ' BE|�, it follows

}E|� ' ��rJE|� (145)

In the figure below, a block scheme of the typical experimental setup used for this kind of mea-
surements is reported.

����� 7KH 0/6 VLJQDO

A further improvement of the white noise technique was suggested by Schroeder himself in
1979 [23] : instead of a common white noise it may be used a special discrete excitation, called
0D[LPXP /HQJWK 6HTXHQFH (MLS). The main characteristics which make this signal preferable
are its repeatability, which allows us to reduce the statistical fluctuations of the response, and
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its mathematical properties, which give the possibility of performing a fast computation of the
cross-correlation.

The MLS is formally represented by a particular discrete binary periodic sequence of elements
n� and ��: in practice, it is generated in a deterministic way by a feedback shift register as the
one shown in Fig. 12 (see [24] ). Here a modulo-two adder (XOR gate) sends to the first memory
unit a retroactive signal combining the ,|� and the last bit of the slot sequence: in this way, the
device generates a repeating discrete output with a period of length � ' 26��, where 6 is the
number of slots (VHTXHQFH RUGHU ): the rate at which these the sequence elements are produced
is the same as the clock frequency sr driving the system. A very important parameter to be set
for obtaining a correct sequence, whose mathematical properties will be described in a moment,
is the position of the tap inside the register: in particular, especially for long sequences, it may
be necessary to arrange the cells structures inserting multiple feedbacks according to a specific
pattern. Just as an example, if 6 ' � and , ' � the obtained sequence is of the kind depicted

),*85( ��� Schematic block diagram of an MLS generator.

below

An important characteristic of the MLS is its flat spectrum (see Appendix). Hence, in spite of
its non random nature, it can be considered equivalent to a white noise excitation. In particular,
the auto-correlation is found to be
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(146)
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The technique for obtaining the impulse response using the MLS as an excitation is analogous to
that employed for a generic white noise: nevertheless, it is useful to rewrite the basic relations,
for they will allow us to explain the special algorithm employed for implementing the cross-
correlation procedure. Let us suppose that a loudspeaker, supposed ideal for simplicity (}rRe@&� '
BE|�), be excited by an MLS, in such a way that the two values of the sequence correspond to
as many values as those of the voltage applied. Then, the signal received by the transducer (for
instance a microphone) can then be written as

RE|� ' r � } '
�3�[
?'f

rE?�}E|� ?{|� (147)

If this is sampled at the same frequency as the one of the excitation (sr ' �*{|), Eq. (147) is
just a discrete periodic convolution [25] , and we may write

RE&� '
�3�[
?'f

rE?�}E& � ?� (148)

Now we calculate the input-output cross-correlation

�rRE&� '
�

�

�3�[
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rE?� dEr � }�E& n ?�o

'
�

�
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'
�

�

�3�[
?'f

rE?�

%
�3�[
�'f

rE& n ?� ��}E��

&

'

�3�[
�'f

}E��

%
�

�

�3�[
?'f

rE?�rE& n ?� ��

&
' } ��r (149)

From Eq. (146) we finally get

�rRE&� ' }E&�� �

�

�3�[
?'f

}E?� (150)

Therefore, the cross-correlation directly gives the sampled impulse response, with the offset
automatically subtracted from the expression.

Now let us see in detail how the entire procedure is performed. First of all we note that,
according to the antisymmetry property of cross-correlation (�%+E�� ' �+%E�� �), we may
write

�rRE?� '
�

�

�3�[
&'f

rE&�RE& n ?� '
�

�

�3�[
&'f

rE& � ?�RE&�

From this equality it is possible to write the algorithm in matrix form

B '
�

�
P�� (151)
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whereB and� are the � -elements vectors of the impulse response and measured signal respec-
tively, and P� is the square matrix (��� ) containing the circular shifts of the sequence rE&�.
The formalism can be easily appreciated taking the sequence �. � d��c �c �c��c �c��c��o as
an example: if for simplicity we write n and � instead of � and ��, Eq. (151) becomes599999997

}Ef�
}E��
}E2�
}E��
}Ee�
}ED�
}ES�

6:::::::8
'

�

.

599999997

� n n � n � �
n n � n � � �
n � n � � � n
� n � � � n n
n � � � n n �
� � � n n � n
� � n n � n �

6:::::::8

599999997

REf�
RE��
RE2�
RE��
REe�
RED�
RES�

6:::::::8
(152)

Note that the right length � of the sequence depends on the length |�o of the impulse response:
in practice, �{| � |�o. Moreover if this has to be analyzed considering all the frequencies up
to s4@ , due to the Shannon theorem [25] , it has to be sampled with a rate sr being at least twice
s4@ . In practice, one must have � � 2s4@ |�o.

����� 7KH )DVW +DGDPDUG 7UDQVIRUP

A significant advantage offered by the MLS technique is that the calculation of Eq. (151) may
be performed in a very efficient way employing an algorithm called )DVW +DGDPDUG 7UDQVIRUP.
We will now briefly explain this procedure, following a work by W.T. Chu [26] .

The starting point of the Hadamard transform method applied to the impulse response cal-
culation is the transformation of the matrix P� into an Hadamard matrix (from now on called
K). This is a square even-dimensional matrix (26 � 26), whose elements are all 	� [27] ; in
particular, it is defined by the relation

K2
26 ' 26 � L26 (153)

where L26 is the identity matrix of order 26. As an example, we here write the matrix KH:

KH '

59999999997

n n n n n n n n
n � n � n � n �
n n � � n n � �
n � � n n � � n
n n n n � � � �
n � n � � n � n
n n � � � � n n
n � � n � n n �

6:::::::::8
(154)

As a consequence of the above definition, the following recursive property holds

K26 '

�
K263� K263�

K263� �K263�

�
(155)
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),*85( ��� Flowgraph of the Hadamard transform of order ;.

The product of the matrix by a 26 elements vector (K26 ) consists of 26E26 � �� arithmetical
operations: in particular, for the KH DS of them are needed:

KH '

59999999997

n n n n n n n n
n � n � n � n �
n n � � n n � �
n � � n n � � n
n n n n � � � �
n � n � � n � n
n n � � � � n n
n � � n � n n �

6:::::::::8
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}
�

6:::::::::8
'
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@n Kn Sn _n en s n } n �
@� Kn S� _n e� s n } � �
@n K� S� _n en s � } n �
@� K� Sn _n e� s � } n �
@n Kn Sn _� e� s � } � �
@� Kn S� _� en s � } n �
@n K� S� _� e� s n } n �
@� K� Sn _� en s n } � �

6:::::::::8
(156)

Nevertheless, it easy to see that, thanks to Eq. (155) , the same product can be calculated through
266 operations only, using an algorithm made up by 6 steps, each of them containing 6 ad-
ditions and subtractions: this is just the Hadamard transform. Instead of giving a formal de-
scription of the general algorithm [28] , we prefer to illustrate, with the help of the flowgraph of
Fig. 13, the way how the procedure is applied in our example (6 ' �). It can be seen that the
number of operation has decreased to 2e.

Now we show how to transform the matrix P into a K, in such a way that the product of
Eq. (151) can be calculated by means of the Hadamard transform. To this aim we may fol-
low, without demonstrations, the procedure suggested by Cohn and Lempel [29] , where the
representation 	�$ fc � and the modulo-two arithmetic are used. First of all, we note that the
Hadamard matrix can be factorized in this way

K ' EEA (157)

where E (EA ) is a 26 �6 (6� 26) matrix and is built in such a way that its �|� row (column)
is the base-2 representation of the integer � (we remind the reader that � ' fc �c � � � c 26 � �, so
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that the total number of bits is 26). Therefore, for KH we have

KH '

59999999997

f f f f f f f f
f � f � f � f �
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68
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EA

We now notice that also the � �� matrix P may be expressed as a product of the same kind
as Eq. (157) : we have

P ' UF (158)

where F (6 � � ) is formed by the first 6 rows of P and U (� � 6) is formed by the 6
columns of P, such that the first 6 rows of U give the 6 �6 unit matrix. Let us verify this
for the matrix appearing in Eq. (154) :

P. '

599999997

� f f � f � �
f f � f � � �
f � f � � � f
� f � � � f f
f � � � f f �
� � � f f � f
� � f f � f �

6:::::::8
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� � �
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�
S
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.
D

57 � f f � f � �
f f � f � � �
f � f � � � f

68
e � 2 D � . S

F

We now call h and U respectively the two sequences of numbers indicating the decimal represen-
tations of the rows of U (from left to right) and of the columns of F (from top to bottom): it is
easy to see that the two matrices are exactly two different permutations of the ��� rows of E
and of the ��� columns of EA . We then may define two permutation matrices: O ' iBoE��c�j,
T ' iB�cSE��j in order to obtain

P� ' OPT ' OUFT ' U�F� (159)

The product P� can then be written

P� 'OAOPTTA� 'OAP�TA� 'OAP��� (160)

where the first equality holds because the permutation matrices are orthogonal. Since P� con-
tains the same elements of the E�c �� minor of K�n�, expanding P� with a row and a column
of zeros it is possible to apply the Hadamard transform upon the � n � vector dfc��o. The
procedure is now complete; we can summarize it in the following way:

(1) factorize the matrix P according to Eq. (158) ;
(2) permute the rows ofU and the columns ofF in such a way that their numerical content (��� )

is ordered in an increasing manner (Eq. (159) );



3.3 Impulse responses ��

(3) define the Hadamard matrix adding a row and a column of zeros to P�

K '

57 f � � � f
... P�

f

68
(4) obtain the vector �� reordering the elements of � through the same permutation used for

obtaining F� (i.e. S� ' TA�);
(5) define the vector

���'

�
f
��

�
(6) use the Hadamard transform to calculate the vector B��:

B�� '
�

�
K���

(7) obtain the vector B� omitting the first element of B��;
(8) reorder the elements ofB� according to the permutation used for obtainingU� (i.e. B 'OAB�).

����� ([SHULPHQWDO VHWXS

The most widely diffuse commercial instrument for the MLS measurements is a PC board called
MLSSA (Maximum-Length-Sequence System Analyzer), developed at DRA laboratories (Sara-
sota, FL, U.S.A.). It is supplied with an output, whose signal is provided by an internal MLS
generator, and with an analog input: measurements are performed sending the stimulus to a loud-
speaker (through an amplifier) and contemporarily acquiring the environment response from a
microphone placed in the desired position. This is first sent to an anti-aliasing filter, then sam-
pled at the same rate at which the excitatory impulses are generated: thus, by means of a software
implementing the Hadamard transform, the impulse response is obtained.

Up to now, it has been implicitly assumed that such a kind of measurements regard the sound
pressure only: actually, the MLSSA system, which is a one channel instrument, has been pro-
jected for the acquisition of a single response (anyway not limited to acoustics). Nevertheless,
we have shown that a complete analysis of the energetic properties of the sound field requires
also the knowledge of the particle velocity. According to the explanation presented in Sect. 2.5,
a function suitable to this purpose is given by the velocity impulse response }�. Actually, this
quantity can be measured even by a single channel instrument: for each coordinate it is suffi-
cient to directly implement Eq. (112) by first measuring one at a time two pressure impulse
responses corresponding to two different locations and subsequently performing the time inte-
gral of their incremental ratio. In practice, two methods may be adopted: the first one is that of
moving one microphone in the two locations, the second, and easiest one, is that of using the
two channels of an intensity probe, as shown in the picture below. Of course, this procedure
cannot be employed for measuring the particle velocity signal of an external field, because when
using the Euler equation it is absolutely necessary that the two pressure signals are acquired con-
temporarily. Nevertheless, in this specific situation we are dealing with a pair of signals which,
though obtained at different times, are due to a deterministic repeatable excitation and not to a
random process: therefore, if we suppose that the system under analysis is time invariant we
are permitted to treat the two responses as if they were taken at the same time. Moreover, the
applicability is further justified by the computational procedure. In fact, the cross-correlation
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),*85( ��� Schematic view of the experimental setup used for measuring pressure and velocity impulse re-
sponses.

between input and output strongly reduces the background noise, so that the final outcome may
be considered a signal almost perfectly faithful to the desired one: in practice, one may think
that during each acquisition the environment undergoes the same reflection pattern.

Obviously, if the measurement is performed by means of different microphones (as it happens
when using the probe), it is essential to carefully calibrate each acquired signal, adopting a
procedure similar to the one described in Sect. 3.2.2. In any case, we must stress that the impulse
responses found in this way have to be thought as defined except for a common constant factor.
In fact, we remind that the signals involved in the cross-correlations (see Eq. (143) ) are the
sequences r� (system input) and rJ ' } � r� (system output), respectively: if an MLS stimulus r
is used, it may be assumed that r� ' gr, g being a constant factor dependent on the excitation
amplitude. Therefore, the cross correlation gives

�r�rJ ' g}

We finally emphasize that, since we are dealing with finite discrete signals, the velocity im-
pulse response is given by (see Eq. (138) )

}�E?� '
�

4f_

?[
6'f

d}R2E6�� }R�E6�o (161)

��� µµ5HFRYHU\¶¶ RI VWDWLRQDU\ VRXQG VLJQDOV
We now want to illustrate the procedure that, given the pressure and velocity impulse responses
and the explicit mathematical form of the excitation, allows us to find the corresponding station-
ary signals. This method may be of great interest, since by the knowledge of both pressure and
velocity time histories it is possible to derive the oscillating intensity just by applying the defin-
ition of Eq. (58) ; in fact, we underline that a direct measurement of this quantity would require
a specific instrumentation, which currently is not commercially available. Moreover, the convo-
lution technique may be applied for accomplishing a kind of ‘‘virtual’’ study of the sound field:
starting from a specific set of impulse responses one can retrieve the time histories of any kind
of signal, and subsequently calculate the parameters which would have been obtained putting a
real source into the environment.
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Of course, also the inverse Hadamard transform can be regarded as a simple application of
the convolution technique. In fact, this allows us to recompute the basic period of the pressure
and velocity sequences determined by the MLS stimulus: all the quantities calculated from these
signals are then related to the field produced by the indefinite iteration of the excitation sequence
and may be employed for performing a broad band analysis (according to the limitations imposed
by the sampling rate). Actually, it is evident that the procedure is redundant if one is interested
in just the stationary parameters, for it is possible to acquire the signals without executing the
forward transform; in this way one may obtain the velocity signals by directly applying the
discrete form of the Euler equation on a set of finite pressure time histories (e.g. two or six of
them). In practice

�E?� '
�

4f_

?[
6'f

dR2E6�� R�E6�o

Nevertheless, we will implement the first method explicitly, since this will give us the opportu-
nity of performing an analysis involving both the transient and the stationary state in the same
frequency band.

Anyway, the most general purpose of the convolution method is that of reconstructing a
generic excitation. In this case, knowing the mathematical form of the signal r, one may obvi-
ously calculate the expression directly in the time domain. On the other hand, this method is in
general quite cumbersome, because it requires an enormous amount of arithmetical operations
(see Appendix). A more effective way is the one based on the implementation of the convolu-
tion in the frequency domain, thanks to the possibility of employing the Fast Fourier Transform
algorithms. For this reason, we will check the feasibility of the convolution equation by apply-
ing the formula presented in Sect. A.7: the task will be particularly simple, since our aim will
be just the reconstruction of simple harmonic fields.

It is clear that the essential requirement we have to satisfy is that of obtaining sufficiently
long steady signals, in order to approach the stationary condition as better as possible. This
can be achieved convolving the impulse responses with long excitation segments, for instance
by means of the overlap-add method, and subsequently rejecting the initial and final transient
parts.
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([SHULPHQWDO DQDO\VLV

The purpose of the set of experiments we will be discussing is the study of the local properties
of energy transfer inside acoustic fields of different kinds. As anticipated above, a particular
attention will be devoted to the relationship between the behavior of the transient phase and
the energy related quantities measured during the stationary excitation of the environment. The
issue will be approached with the aid of the theory of energy fluxes division: we will show that
the knowledge of both radiating and oscillating intensity, along with the associated indicators,
makes it possible to achieve a physical interpretation of absorption and reflection phenomena on
a local basis. In our opinion, this could represent the first step of a new complementary approach
to the usual geometrical treatment employed in room acoustics.

��� 6WXG\ RI WKH VRXQG ILHOG RI DQ RUJDQ SLSH
The first experiment concerns the measurement of� and ` in the one-dimensional field inside
an organ pipe: the main scope is that of giving a simple introductory example where one can
directly understand the meaning of the indicator # when passing from the inner field to the
outer field, thus drastically changing the boundary conditions and, consequently, the radiation
characteristics.

The sound production mechanism of an organ pipe is based on a stream of air at constant
speed, which through a slit (called the PRXWK ) placed in the bottom and directed upward, is sent
against a sharp edge (the OLS ): this interaction produces a series of regularly periodic vortices
blowing in an alternate way at the two sides of the lip. If the vortices’ period (HGJH WRQH )
corresponds to one of the resonances of the upper duct (see [30] ), the column of air contained
inside it undergoes an excitation and starts to vibrate with the same frequency. The jet-lip system
is thus the excitation source of the instrument while the air column is the corresponding resonator
and the real source of the organ sound. Moreover, these two parts are tightly matched together so

��
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that altering the former one would alter the latter and vice versa. Once the driving mechanism,
which is usually supposed to act in a steady manner, has established, the sound field within
the pipe (that is after the so called VHWWOLQJ WLPH ) reaches a permanent condition (called VWHDG\
VRXQG ): it is thus possible to perform an analysis of the field involving the air particle velocity,
the sound pressure and the joint behavior of the two.

A rough explanation of the spectral content of an organ pipe field follows from the study
of resonances inside a finite duct. In particular, as a first approximation it is assumed that the
lower end is always a pressure-release surface (F ' ��, ~ ' f) while the upper end is perfectly
reflecting when the pipe is closed (F ' �, ~ ' 4) and a pressure-release surface when it is
open. Accordingly, for a pipe of length u, the spectra in the two cases are given respectively by

/E�,��
? '

E2?� ��ZS

2u
/E�R��
? '

?ZS

u
(162)

����� 0HWKRGV

The energetic analysis was accomplished along a straight path beginning near the mouth of the
pipe (see Fig. 15) and ending over its top: the measurement spatial range started at the excitation
region, where some of the characteristics of the driving mechanism clearly appear, to the farthest
part of the pipe and also outside it, where the inner field starts matching with the remaining of
the room.

We used a wooden flue open organ pipe, about ��Hfm long. Its tune was the .2 of the
musical scale (fundamental frequency: H2�DHz). This particular choice was suggested mainly
by practical reasons; in fact, wood was particularly convenient, for we had to perform several
holes along the pipe in order to insert the microphones of the intensimetric probe.

Measurements were carried out under steady sound conditions, while air-supplying the pipe
by a small blowing machine (Fig. 16); we employed a %	. ���� sound intensity probe in
the ‘‘side by side’’ configuration, with the two microphones tightly fixed together in a plastic
holder and inserted into pairs of adjacent holes all along the pipe axis. All the unused holes had
been well sealed by means of metal screws and rubber washers, to avoid any internal sound field
change due to air escape. The choice of a low frequency sound was done with the aim of keeping
the bias errors, typical of theS�S intensimetric technique, as low as possible, especially for upper
harmonics; for the same reason we even set the distance between the probe microphones to the
non standard value ofe U4, so assuring minimum errors up to about2 !O3 and no damage on
the pipe walls while making the holes. As far as concerns the data taken outside the pipe, it
is worth underlining that a correct procedure would have required free field conditions (as in
an anechoic chamber); anyway, for practical reasons, we performed the measurements in a big
shed, which, even if certainly not anechoic, proved to be suitable for this first investigation.

The probe signal was sent to a%	. ���� intensity meter that gave us the average sound
pressure, particle velocity and mean intensity levels. We performed the analysis in a wide fre-
quency band, ranging fromeSO3 to 2�.e !O3; besides, we kept the integration time quite long
(�f t), to maintain statistical errors lower thanf�� _� for all the quantities. The data were then
transferred to a PC, then converted into physical units and processed.

The main problem encountered during the experiment was due to the channels’ phase mis-
match, which in fact is a particularly important source of systematic errors in low frequency
standing wave fields. We realized it just at the beginning, when we saw that a tiny displacement
of the probe from its right position produced a not negligible sound intensity level variation
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),*85( ��� The organ pipe seen from the measurement’s side. Note the screws plugging the holes and the probe
placed in the middle.
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(� f�D�� _�). In order to make up for this effect, we decided to collect data adopting the probe
reversal technique (see Sect. 2): for all the quantities and in each point along the pipe, we took
two values, corresponding to the two opposite probe axis directions. The final corrected inten-
sity was then given by: � ' E����2�*2, where the subscript � refers to the measurement done
with the probe axis in the same direction as the pipe axis (from bottom to top), and the subscript
2 to the opposite direction.

),*85( ��� $: The organ pipe setup. %� side view of the probe inserted in a couple of holes.

����� 5HVXOWV

We performed measurements on 2� points, �2 U4 far from each other: the first one and the last
one were �2 U4 and 2D2 U4 from the base respectively. The last six were outside the pipe.

The first result we report is a typical sound level spectrum (Fig. 18), obtained sending one
channel of the probe to an 2QRVRNNL &) ��� FFT spectrum analyzer. This served us just for a
few remarks about the frequency content of the pipe: first of all, it can be seen that the role of
the fundamental tone is predominant, even if the value of sf ' H2�D Hz is not the one given by
the second relation of Eq. (162) , meaning that the effective length where the oscillation of the
column of air occurs is greater than the physical length of the duct. Nonetheless, apart from this
discrepancy, the spectrum is perfectly harmonic, with all the even and odd components clearly
visible until the fifth one.

Below we report all the energetic quantities versus position (Fig. 17). Graphic $ shows the
acoustic squared pressure and the normalized velocity (52�2), whose behaviors confirm that the
field is almost completely built by the fundamental frequency. The same characteristic is evident
looking at graphic %, where the indicator j is reported (see Sect. 1.6): it oscillates on a space
scale whose period is about bf*2 * 24 (bf ' S*sf ' e��.4).



�� Experimental analysis

& shows the average sound intensity. The most important feature to be noted here is that
this quantity reaches very high values, especially in the region close to the mouth (f�2`*42 *
�2� _� rel. to �f3�2`*42): this confirms that the inner field is not formed by perfect standing
waves and, as a consequence, a certain energy flow takes place (otherwise we could not hear
the sound !). Unlike the energy density, which is roughly constant inside (about f�� a*4�), the
sound intensity varies with position; actually, this is not surprising, since we took data just in
the middle of the sound source, which is distributed exactly over the zone where the vortices
interact with the column of air (remember that in a one-dimensional field the property is math-
ematically expressed by the relation Y�*Y% ' kR^l). On the other hand, being the field almost
completely monochromatic, a kind of ‘‘standing–wave degree’’ is represented also by the oscil-
lation amplitude ofj, going from� to a minimum value of aboutf�2: as we have pointed out in
Sect. 1.8.1, in a perfectly standing monochromatic wavej varies periodically betweenf and�,
while the more the field becomes progressive, the morej is quenched to�. Finally, the plot for
the energetic indicator# is shown in'� We remind that this is defined as theX velocity modulus
in units ofS and it is supposed to give a synthetic quantitative evaluation of the radiating degree
of the acoustic field. In our case,# is very small inside (� f�fD) but it undergoes a consider-
able increase outside (it reachesf�2 at2�D4), as we expect from a field which abruptly becomes
more progressive and radiating; actually, what exactly happens when passing from the inner to
the outer field, is that both the intensity and the energy density fall off, because we are getting
far from the source, nevertheless, their ratio increases.

0HDVXUHPHQW RI RVFLOODWLQJ LQWHQVLW\

In order complete the study of the pipe field we measured also the oscillating intensity [31]
. Since none of the commercially available instruments currently implements the measure of
this quantity, we used an intensity meter specifically built for this purpose [32] . This is based
on a software tool, developed within the/DEYLHZ R� environment, which processes the signals
coming from the probe channels: along with the oscillating intensity it can measure also the usual
radiating intensity, the sound pressure and the particle velocity. Data acquisition (digitization
and sampling) is performed via a�2 bits acquiring card, while analysis (�*� octave filtering and
algorithms) takes place in the host PC, where results are stored for subsequent rendering.

The new set of measurements was accomplished on�� points of the axis,H U4 far from each
other, of which the last�� were in the outer region. In Fig. 19 the overall levels of� and-, both
on a_� scale, are shown. Note that inside, the- level is much higher than that of�, as expected
from an almost-standing wave field. Moreover, its behavior resembles that ofj; in particular,
the two maxima of- coincide with the points where kinetic and potential energy densities are
equal (j ' �). When passing from the last inner point to the outer region, following the pipe
axis, one then finds that the two quantities exhibit a remarkable drop but with a different slope,
so that at aboutHD U4 from the upper edge they intersect.
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��� 0HDVXUHPHQWV LQ D GXFW
A complete sound field characterization in a closed environment was accomplished measuring
pressure and velocity impulse responses in a plexiglass duct, of dimensions e4 � f�2H4 �
f�2H4 (see Fig. 20). The quantities, obtained by means of the MLS technique, were used
to perform an analysis comprising both a study of the transient state (reverberation) and the
calculations of the energetic parameters during the stationary excitation.

This particular acoustic environment, where the sound source was a loudspeaker placed at one
of the two openings of the duct (see Fig. 21), was chosen for exploiting the possibility of working
in two different field conditions, that is one and three-dimensional (from now on 1D and 3D),
according to the sound propagation properties of waveguides excited with different frequencies
(see Sect. 2.2.1). The two conditions were achieved by filtering the measured signals under and
above the minimum cutoff frequency (sS * S�DO3). Therefore, in order to consider just low
frequencies in one dimension or high frequencies in three dimensions we had to perform two
separate groups of measurements: in the first one we made use of an axial probe (%	. ���� -
microphone diameter: ��2. U4) with a long spacer (D U4) and of a vectorial probe (%	. ����
- mic. diam.: f�Se U4) with a short spacer (��2 U4) in the second one.

Another physical characteristic we wanted to vary was the absorption property of the duct
end (the one opposite the source): this was first left open, then closed by two different materials:
a foam rubber layer (� D U4 thick) and an aluminum panel (� U4 thick). In this way, we created
three acoustic fields with quite different radiation properties, which allowed us to perform a
comparative analysis upon the physical quantities obtained.

In Fig. 22 we report the outline of the experimental apparatus. The purpose of the %	.
���� analyzer is that of monitoring the acoustical quantities during the stationary excitation.
This was done mainly for performing a particular test about the system ergodicity, which will
be described in more detail below. Note also that for simplicity just two channels are shown in
the picture; anyway, we remind the reader that in the 3D field measurements we used a vectorial
probe, consisting of three pairs of channels, all of them sent to the same preamplifier-power
supply system (%	. ���� ). The probe reference frame is depicted in Fig. 23: the % coordinate
is aligned along the duct axis and oriented from the speaker (% ' f) to the opposite end.

����� 3DUW ,� TXDOLWDWLYH DQDO\VLV RI WUDQVLHQW VWDWHV

In the following table we summarize the experimental parameters adopted for measuring impulse
responses in the two frequency ranges: these were bf�DSfO3 and .�f�ee.fO3, each of them
covering an integer number of third-octave bands (H in both cases). Note also that the stimulus
frequencies sr was set in such a way to satisfy the Nyquist criterion sr � 2s4@ (s4@ ' DSfO3
and ee.fO3, respectively).

)LHOG )LOWHU %DQGZLWK 0/6 IUHT. 3UREH W\SH 3UREH VSDFHU
1D bf� DSfO3 HfffO3 %	. ���� (axial) D U4
3D .�f� ee.fO3 �2fffO3 %	. ���� (vectorial) ��2 U4

We start our study with a set of qualitative considerations about the field behavior during the de-
cay. First of all we present some examples of impulse responses in both field conditions: in Fig.
24 the overall pressure and velocity of the 1D case with the aluminum panel and in Fig. 25 the
quantities }R, }�% and }�+ relating to the 3D field in the same condition (the }�5 term is not shown
because, as expected from symmetry properties, it is similar to }�+ ). These plots are reported
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),*85( ��� The plexiglass duct with the 1D probe inside. On the right it is visible the foam rubber layer termi-
nation.

),*85( ��� The box speaker facing one of the duct’s openings.
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),*85( ��� Schematic view of the experimental setup used for the measurements in the duct.

),*85( ��� The reference frame seen from the opening opposite to the speaker.
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just for a few introductory remarks. The first regards the way how the different field behav-
ior affects the appearance of the impulse responses: in the 1D case a clear reflection pattern is
clearly visible while the same is not true in 3D, apart from a slight structure appearing just in the
plot of }�% . This happens because the total mode number is much higher, due to the wider fre-
quency range and to the higher modal density (the sound propagation in 3D involves transversal
modes). A proof of this feature is given by at the two spectra reported in Fig. 26, which were
obtained by calculating the discrete Fourier transform of the pressure impulse responses. In par-
ticular, from the upper plot, showing the frequency interval between �ff and DffO3, it may be
seen the resonant pattern of a confined 1D field: the separation between adjacent peaks is {s *
efO3 * S*2u, u being the duct length (e4).

R 	 � LPSXOVH UHVSRQVHV DQG HQHUJ\ GHFD\V

The first thing we wanted to deal with was the study of the kinetic energy’s behavior with respect
to the potential energy. In fact, as we pointed out previously, it is customary to neglect the kinetic
term when studying the sound decay: this happens both for practical reasons (the potential term
is derived directly from a single sound pressure signal) and also because it is generally believed
that the two curves coincide.

In practice, we here represent the decay curves on logarithmic scales, i.e. plotting the level
with respect to the initial value:

u` E|� ' �f *L}
` E|�

`f

In Fig. 27 is reported an interesting case (relative to 1D field in the aluminum panel), for it
shows that strictly speaking the assumption of the equivalence of the two decays cannot be
considered valid in general: in fact, it is evident that the slopes of`g and`L are clearly
distinct. In order to give a quantitative evaluation of this fact, we note that at least in the first
time interval (some tenths of second), the logarithmic decay can be considered linear, so that the
typical exponential laẁ E|� ' `fi

3|*� may be applied (see Sect. 2.6.3). We can determine
the two decay constants� directly from the slopes: in particular, we consider the firstf�e t,
where the levels of̀ L and`g are about�2f _� and�2� _� respectively, corresponding to
�g * f�fHD t and�L * f�f.D t. The difference between the first two is thus not negligible, being
of the order of�fI and this is approximately maintained until the noise threshold appears in the
kinetic energy curve (� �ef _� ). Fig. 28 shows the 3D field case: it is interesting to note that
also the three kinetic terms (%, +, 5) behave in a quite different manner. On the bottom part of
the Figure the total energy decay is reported: note that its slope is intermediate between that of
the potential energy and that of total kinetic energy. A different phenomenon is shown in Fig.
29 (1D field in the open duct): fitting the firstf�� t we obtain�g * f�fD2 t and�L * f�fS2 t
({�*�L * �DI) but the curves meet again at aboutf�S t, i.e. they come to a condition where
`g and`L have the same ratio as the initial one. Moreover, though not shown here, they go on
like that until the noise threshold is reached. Hence, in this case we may assume the equivalence
between the decays of the kinetic and the potential terms, but just on a large time scale, because at
the beginning the two decays occur in a different way. As regards the 3D behavior (Fig. 30), the
total kinetic energy follows almost perfectly the potential one, apart from some tiny deviations.
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),*85( ��� 1D field impulse responses in the duct closed by the aluminum panel. 7RS: pressure; %RWWRP:
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,QWHQVLW\ LPSXOVH UHVSRQVHV DQG GHFD\V

We now want to analyze the transient behavior from the intensity viewpoint. First of all, we
have to calculate the ‘‘intensity impulse response’’}� ' }R}�, which may be interpreted as the
intensity behavior observed due to an impulsive pressure. Its importance is due to Eq. (132) ,
stating the validity of the back integration method for finding the ensemble average of a broad
band intensity signal during the decay.

It is interesting to take into account some examples of intensity impulses. From Fig. 31
in particular (1D field with probe at%f ' 2�� m from the loudspeaker), one realizes that the
reflective patterns already noticed for}R, appear in a much more evident way, meaning that the
wavefronts behavior, which follow an impulsive excitation, is best represented by the flux time-
history contained in}�. In fact, the energy oscillation mechanism is here highlighted due to the
presence of a clear sequence of progressive and regressive energy streams. Fig. 32 (first.f4t)
better shows this phenomenon: measuring the time intervals between two consecutive positive
peaks and between a positive and a subsequent negative peak, one finds{|� * f�f2� t and
{|2 * f�f� t, respectively. The interpretation of these peaks as energy fronts traveling from side
to side is supported by the valuesS{|� * H4 ' 2u (twice the duct length) andS{|2 * ��e4 '
2Eu�%f�. From this point of view 3D fields behave in a quite different way. Look for instance
at Fig. 33, which reports the components}�% related to the three boundary conditions: owing to
the large amount of modes present in the duct, the energy flux now appears completely smeared.
Anyway, it is worth noting the difference between the aspect of the first two plots and the last
one (duct with aluminum termination), for this shows a greater negative regressive component
due to the higher reflection property of the boundary. A more evident oscillating behavior is
then encountered when comparing the% component with the two transversal directions (Fig.
34). The typical decaying statistical average�E|� in the 1D field is shown in Fig. 35. Its most
outstanding characteristic is the non-monotonic nature, which is a direct consequence of the
positive and negative peaks of}�E|�. Actually, the behavior of� is oscillating: this appears to be
marked passing from the foam to the aluminum termination, the latter being characterized also
by a slower decrease. In particular, the corresponding energy decays, which are here reported
for comparison, almost perfectly follow the large time scale behavior of the intensities. The 3D
case is summarized in Figs. 36 and 37: the first one reports the magnitude of intensity (m�m)
next to the corresponding total energy, while in the second one the first4t of the three single
components in linear scale (aluminum termination) are shown.

����� 3DUW ,,� VWDWLRQDU\ ILHOGV¶ SDUDPHWHUV

The first aim of this section is to discuss, as quantitatively as possible, the phenomenological
relationship between the energy decay time and the field parameters observed when exciting the
environment in a steady manner.

(UJRGLFLW\

The first subject we want to treat is the check of the relation expressed by Eq. (135) , whose
physical meaning is that the statistical average of an energetic quantity at the beginning of the
decay, calculated from the impulse response integration, coincides with the time average of the
same quantity when the excitation signal is stationary. For achieving this, we performed a set of
measurements maintaining the MLS stimulus steady and using a%	. ���� analyzer to obtain
the correspondingkR2l, k�2l andk�l. Since we decided to perform this test after having acquired
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the impulse responses and thus we couldn’t recover the same excitation amplitude used at the
beginning, we had to devise a trick in order to refer the signals obtained in the two cases to a
common value. In practice, we decided to normalize the pressure and velocity impulse responses
to the average values of the steady field, i.e. we imposed the ergodicity relation at| ' f to }R
and}�, and then we checked wether the behavior of the intensity was the expected one. In short,
the adopted procedure is was the following one (for simplicity we report the one relative to the
1D field, the 3D extension being obvious):

(1) calculation of:

h}RE|� '
v

kR2rlU"
f

}2RE� � _�
}RE|� h}�E|� '

v
k�2rlU"

f
}2�E�� _�

}�E|�

}RE|� and}�E|� being the previous impulse responses,kR2rl andk�2rl the stationary measure-
ments;

(2) calculation of the impulsive intensity time integral:

�Ef� '

] "

f

_� h}RE� �h}�E� �
(3) comparison of�Ef� with k�rl ' kRr�rl.

Fig. 38 reports the superimposed plots of�Ef� andk�rl of five different points taken along
the1D field, as usual in correspondence of the three boundary conditions. The top and middle
ones, referred to the foam termination and the open duct respectively, show a good agreement of
the two quantities; in fact, the discrepancy is never greater thanf�2 _� ({�*�r � ���I), which
can be considered as the order of magnitude of the statistical and systematic errors affecting such
a kind of measurements. The situation is quite different for the aluminum case (bottom plot):
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here the discrepancy between �Ef� and k�rl reaches ��D _� ({�*�r � 2f��fI). Nevertheless,
this does not suffice to establish that there exists a deviation from the ergodic behavior: one thing
we can state is that, being the field more reverberating than in the first two cases, it is likely that
the phase mismatch error is much more important, and that this may be of different entity in
the two readout chains (this could have been somewhat expected, since the MLSSA system
receives the signals from a single input, while the intensity analyzer elaborates two channels
simultaneously).

In the 3D case the same behavior is found comparing the % component with the transversal
ones; in fact, the latter here feel the effects of the strong confinement caused by the plexiglass
walls. An example (open duct) is reported in Fig. 39: data along % differ by less than f�2 dB,
in contrast with the ��D dB observed in the + direction. In spite of this discrepancy, it is worth
noting the astonishing similarity between the behaviors of �Ef� and k�rl, which is probably the
most convincing proof of the presence of a systematic error.

(IIHFW RI ORFDO HQHUJ\ WUDQVIHU RQ UHYHUEHUDWLRQ

We now want to study the relationship between the decay rate and the energetic parameters in
the stationary sound. In particular, we may follow the reasoning presented in Sect. 2.7, where
we qualitatively explained how the # indicator may account for the energy absorption during
the decay; this choice is supported also by the results of the measurements upon the organ pipe
field, by which we were able to find an experimental evidence of the fact that # represents the
local amount of energy transferred on average in the field. Since # is defined as the normalized
ratio of the mean intensity and the mean energy, on the basis of the previous discussion about
ergodicity, we may determine this quantity simply by the impulse response integration. The
method may suffer from some inevitable limitations ascribed to systematic effects; nonetheless,
it may be very useful for showing how one can obtain important information about transient and
stationary fields, analyzing just a set of pressure impulse response measurements,.

As regards the characterization of the decay, first of all we assume for simplicity that, ac-
cording to the diffuse field hypothesis, the curves behave in an exponential way. Even if in our
case the property is not always well satisfied, this gives us the opportunity of expressing in an
approximate way the decay rapidity, for instance by means of a simple parameter like the re-
verberation time (see Sect. 2.6.3). Actually, in our application we prefer to calculate the initial
slope given by the first �f _�, in order to reduce the error done interpolating the level curve
with a straight line: in practice, we will calculate A�f instead of ASf,.

We report in Fig. 40 some different examples of early decays in the 1D case; note that,
in order to extend the data sample, one more boundary conditions was added (double layer of
foam rubber). Furthermore, from the same figure one clearly realizes the importance of a careful
choice of the time interval to be fitted; in particular, it is evident that the real starting point of
the decay does not coincide with | ' f (the instant at which the excitation stops) but it comes
after a little delay dependent on the probe-speaker distance. We performed this measurement
on five points along the duct, f�.4 apart (from % ' ��.4 to % ' f�b4), and for each of
them we calculated both A�f and the # indicator. The average values of these parameters in
the four field conditions are reported in Fig. 41. We estimate an experimental uncertainty of
the order of D � .I in both A�f and #: in the first case due to the variation with respect to
the measurement point and to the fitting accuracy, and in the second case due to the systematic
phase error. In spite of that, a clear inverse relation between the two quantities is evident: the
decay time increases with decreasing #. Actually, this could have been expected even from the
previous considerations about the physical meaning of #; nonetheless, this result is important
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by itself, for it highlights how a property characterizing the stationary state closely affects the
transient behavior. Data related to the 3D fields are reported in the following table: they refer
to three boundary conditions and to four measurement points f�b4 apart (from % ' ��.4 to
% ' �4).

)RDP 2SHQ $OXPLQXP
A�f (t) f�fD f�fb f��D
# f�D2 f�eS f��D

As explained above, the error on # is much bigger here (� �f��DI); moreover, also the uncer-
tainties related to the evaluation of A�f are more relevant than the 1D case, being the behavior
of the decay curves not perfectly exponential. Anyway, a certain inverse relationship between
the two quantities can be observed in this case too.

0HDVXUHPHQWV RI RVFLOODWLQJ LQWHQVLW\

Of course, for the study of stationary parameters to be complete we have to include the oscillating
intensity calculation: in particular, we may be interested into the effective value -. Yet, this
cannot be directly obtained from the intensity impulse responses, as it had previously been done
for the mean radiating intensity, this because the equivalence between statistical averages at the
transient start and the time averages during the stationary sound holds just when dealing with
second order quantities (e.g. � and �). In short, for achieving our goal we then have to use the
pressure and velocity signals of the steady field itself. Actually, this gives us the opportunity to
reconstruct the sound field by implementing the convolution procedure. In particular, for finding
the stationary signals corresponding to the same spectral composition of the impulse responses,
we have just to transform them back by the inverse Hadamard algorithm.
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The results we are going to present are referred to acquisitions taken at rates higher than the
previous ones (�f !O3 for 1D fields and Df !O3 for 3D fields): this was done in order to have a
set of signals more densely sampled and thus more suited to our purposes. Data relative to the1D
field are shown in Fig. 42: we calculated both - and �, (even though, the latter corresponds
to that obtained by the impulse response integration). We here can realize what happens to the
oscillating intensity when drastically varying the boundary conditions: when the field becomes
more confined (due to a less absorbing boundary surface), the oscillating part of the intensity
increases while the radiating part decreases. Obviously, this somewhat agrees with the results
of the previous section, where we have compared # with the reverberation time. Moreover, a
glance at the vertical scales indicates that the two rates of change are not equal to each other; for
better seeing this, we define the dimensionless ratio � G' -*�: this is found to be � * 2�D, D�.,
�S�b, e2�H. A similar behavior is observed in the 3D case (though in three conditions instead
of four): in particular, � * ��b (one foam layer), 2�. (open duct), H�S (aluminum panel). Here
the increment is less marked than before: actually, this is probably due to the fact that now the
physical surface bounding the sound field is larger, since it comprises the transversal walls too,
and the fraction which is changed (as usual the duct termination) is just a small part of the entire
structure.
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��� 0HDVXUHPHQWV LQ DQ RSHUD KRXVH
Since our efforts were mainly directed to the application of the intensimetric methods into or-
dinary room acoustics environments, we decided to perform the kind of analysis presented in
Sect. 4.2 in one of these situations: to this aim we chose a historical opera house (the ‘‘Teatro
Comunale’’ in Ferrara, built in 1798).

As a source we adopted the1RUVRQLF dodecahedral speaker system (Fig. 43), capable of pro-
viding a good omnidirectional excitation; according to a common situation encountered during
the performance, this was placed in the middle of the stage. Three locations were investigated:
the mouths of two first order opposite boxes (17 and 7) and the central stall between them (row
13). Fig. 44 sketches the way how the vectorial probe reference frames (%	. ���� with a
D U4 long spacer) were set in the three measurement points: note that the% axis was always di-
rected along the probe-source line. The analysis upon the acquired data was then performed in
the band:�HfO3� �effO3 (3 octaves).

The energy decays measured in the three points are practically identical (Fig. 45 shows the
one obtained in the stalls), furthermore, their behavior is almost perfectly exponential: this
means that the environment behaves quite in accordance with the diffuse field properties. In
particular, we getA�f * f��� t andASf * ��2 t. Besides, the ratio of the two energy terms re-
mains constant during the decay; in particular, these are very well balanced, beingj * f�b..
Some important differences are found when comparing the intensity decays: look for instance
at Fig. 46, which shows the single components of�E|� in the stalls and in box.. In the for-
mer case the initial�% (component along the sight-line) and�5 (vertical component) are of the
same order; subsequently, the decay of the first one occurs in a non monotonic way, starting
at |fc% * f�fD t: actually, this could mean that at the beginning the largest energy contribution
comes from the source itself but thereafter, once this is passed, the positive front caused by the
rear wall reflection prevails. On the other hand, the decay of the vertical component starts a little
later, (roughly at|fc5 * f�fH t) and continues monotonically towards zero. The distances cor-
responding to these time lags areS|fc% * �.4 andS|fc5 * 2.4 respectively: since the first is
the probe-speaker distance, the second could be interpreted as a sort of minimum path required
for energy to reach the measurement point from the vertical direction. Note also that the lateral
component (�+) is quite small, both at the beginning (stationary value) and during the transient,
as it can be expected looking the configuration of the probe-source system with respect to the
symmetry of the environment.

As regards the decays in the box (bottom plots in Fig. 46), some meaningful characteristics
may be noticed: first, differently from the previous case the% component behavior is monotonic.
Moreover, the5 component is much low, probably because the reduced vertical space suppresses
the lowest frequencies. Let us now examine the stationary indicators# and�; we remind that
the former is given simply by the impulse response integration, while the latter requires the
calculation of- from the field obtained by the inverse Hadamard transform. The results are
reported in the table below (the error on# is of the order ofDI).

6WDOO �� %R[ �� %R[ �
# �2H �e2 �e2
� e�S 2�b ��f

We can clearly distinguish two distinct ranges; in fact, the stall differs from the boxes for having
a smaller energy transfer coefficient and a larger�. In practice, this indicates that at the mouth
of the lateral boxes there it occurs an increase of the amount of energy flowing away on aver-



             4.3 Measurements in an opera house                                                                                               95 

FIGURE 43. Thedodecahedral speaker system used in theoperahouse.
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FIGURE 44. The threemeasurement pointsand their reference frames.
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age. Therefore, we are in presence of a sort of symmetrical behavior with respect to the one
discovered when studying the field in the duct: here, we find equal energy decays and different
stationary parameters, while in the duct each decay curve corresponded to a specific parame-
ter. This phenomenon is certainly worth of consideration; in fact, we must consider that in the
present case data are taken moving the measurement point in a complex environment, formed
by several communicating enclosures, which are completely different from each other (the large
central hall and the small box). On the contrary, the previous measurements were done inside
a simple environment, where just a small portion of the boundary conditions was changed. In
summary, by this distinction we have found a direct evidence of the fact that both the environ-
ment dimension and the characteristics of the walls affect the local energy transfer inside the
acoustic field.

The item we want to treat for completing the study of the stationary field conditions regards
the visualization of the polarization ellipsoids; in practice, this is achieved by building the indi-
catrix quadric from the vectors hE|�, obtained from the reconstruction of the field. We remind
that the computational procedure consists of calculating the tensor � ' 2 kh
 hl and then plot-
ting the quadric ^��3�

n ^ '� (see Sect. 1.7.3 and A.3.1); nevertheless, we here prefer to take
the normalized tensor �? G' �* m�m2, which is related to the coefficient � through the relation
� '
s
Ah�?. In Figs. 47 and 48 we report the ellipsoids of the stall and box 7, respectively. By

means of them we may find the average oscillation properties in our two typical configurations.
It may be noted that the first ellipsoid is strongly affected by the particular symmetric structure
of the hall, since its axes are directed along the reference coordinates: in particular, the oscil-
lation is maximum along % and minimum along +. The situation in the box is quite different;
here a marked polarization is still present but this is roughly oriented along the bisecting line of
% and + (thus roughly parallel to the previous polarization direction). In order to give a more
quantitative evaluation of the asymmetries in the three cases, we also report in the table below
the ellipsoids intrinsic semiaxes, that is the elements of the tensor �? in diagonal form. Any-
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way, we must stress the fact that these data, as well as their graphical representations, have to be
taken with a certain caution, since no precise evaluation of the systematic errors involved in the
measurement procedure is actually available.

6WDOO �� %R[ �� %R[ �
%� ��D 2�f ��D
+� 2�f ��e ��D
5� 2�e ��S 2��

��� 3XUH WRQHV DQDO\VLV E\ FRQYROXWLRQV
The last issue we want to deal with regards the stationary analysis of simple sound fields through
the FFT-based convolution procedure described in Sect. A.7. We applied this method in some
of the environments considered above: the duct at low frequency (1D field) and the stalls of the
opera house. In particular, these served us for investigating the energy fluxes ratios in the mono-
chromatic case: therefore, we completely disregarded the absolute evaluation of the quantities
and just calculated the dimensionless parameters j ' 2

s
`g`L*E`g n `L� (energies par-

tition) and # ' m�m *S` (energy transfer). We then introduced � ' -*S` , for evaluating the
normalized amount of oscillating flux.

The procedure was implemented in specific frequency ranges, repeating the convolution at
constant intervals. Each cycle may be summarized as follows:

(1) set the size of the measured impulse responses } (pressure and velocity) to a power-of-two
number (� ' 26), by appending, if needed, a series of zeros to its end;

(2) define a segment of a discrete harmonic excitation signal:

rE?� ' � ULtE2Zs?{|� ? ' fc � � � � 2u

where u ' � n �. Being sr ' �*{| the sampling rate (the same of the impulse response),
the frequency s of the signal must be such that: s � sr, A � u{|.

(3) implement a two step overlap-add convolution between r and }, i.e. by executing two 2�
points FFT in correspondence of the first and last u points of r respectively (note that 2� '
un� � �);

(4) extract the central part of the whole obtained signal (of length 2u n � � � ' �� n �)
rejecting the first and the last � points.

In the table below we report the parameters used; note that in each case the frequency interval
{s is smaller than the frequency resolution {sr ' sr*� .

� sr 6LJQDO IUHT� {s 1XP� RI SRLQWV
'XFW �S�He �f !O3 �ff� DDfO3 DO3 b�
2S� KRXVH �2.SH �f !O3 2ff� �DfO3 2O3 .S

The behavior of # in the duct field is shown in Fig. 49. We used two plots for distinguishing
two corresponding patterns observed for the closed duct (top plot) and the open duct (bottom
plot) respectively: in the first case the three reported behaviors are quite similar to each other,
apart from the offset, which turns out to be strongly dependent on the absorption properties of
the boundaries. The single frequency investigation thus confirms the property found by means
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of the broad band analysis performed with the MLS technique. On the contrary, it is interesting
to note that the open duct gives rise to a different frequency dependence: in particular, this is
much more irregular than the previous ones. Moreover, here the relationship with respect to
the other three conditions does not identically reflect the overall behavior (remember that we
found #@,�6 	 #JRe? 	 #sJ@6), meaning that broad band value is mostly affected by the different
spectral composition of the two filed types.

By Fig. 50 we can gain a deeper insight into the relation between j and the behavior of the
oscillating intensity, which it has already been mentioned in Chapter 1 (Sect. 1.8.1) and when
studying the inner field of the organ pipe (Sect. 4.1.2). The first characteristic standing out is the
clear similarity of the two quantities, furthermore, it may be also seen that from top to bottom
they gradually tend to be identical. If we then contemporarily take into account the behavior of #
reported in the top part of Fig. 51, we note that the smaller this is, the more the overlap between
j and � is pronounced. This is evident also when dealing with a single behavior: for instance,
in the single foam layer case (middle plot of Fig. 50) the two lines are distinct in the frequency
range eff � DDfO3, where a remarkable increase of # occurs. In fact, this phenomenon is the
experimental evidence of the relation: �2 n -2 ' kR2l 
�2R� n 2 kR2l 
�2^� (Eq. (63) ). In
practice, the condition � * f is equivalent to �R * f and -2 * 2 kR2l 
�2^�, from which it
follows j * �.

In the 3D field of the opera house the behavior of # does not show any regular behavior: we
realized it performing the analysis both in a small scale (like the one shown in Fig. 51) and in a
large scale (i.e. increasing the interval {s and extending the total frequency range). Actually,
this seems quite a general property of complex fields (it has been observed in the 3D field of
the duct as well). On the other hand, the comparison of � and j indicates the same property
observed in the previous case.



&RQFOXVLRQV

The ultimate meaning of the experiments presented in the last chapter is that of highlighting the
effectiveness of intensimetric techniques for understanding ordinary room acoustics phenomena.
First of all, several physical quantities, rigorously defined when discussing the general laws of
linear acoustics, were measured in the inner and outer steady field of an open organ pipe: this
preliminary test confirmed the possibility of quantifying the sound radiation level through the
ratio of the mean intensity to the total energy density (# indicator).

Subsequently, according to the interpretation of the sound reverberation processes on a local
basis, we studied the way how the same field indicator can be employed for describing the varia-
tions of energy absorption when changing small portions of boundary conditions into simple test
environments (e.g. the plexiglass duct in 1D and 3D sound propagation conditions). This was
accomplished by a deep study of the various quantities taking part in the sound decay, with the
aid of an original improvement of the cross-correlation technique, by which we could measure
both the pressure and velocity impulse responses. The main result was the inverse relationship
holding between the decay time and the # indicator: this means that, for a given environment,
a high local energy transfer present during the steady sound preceding the transient state corre-
sponds to a short time required for energy to extinguish. In particular, measurements related to
the steady state were performed by the back integration of the corresponding impulsive quanti-
ties: the method was supported by a sort of ergodicity check, which confirmed the equivalence
of stationary and ensemble averages in correspondence of transition from the steady to the tran-
sient state.

By executing the same kind of analysis in an ordinary environment (an opera house), we then
realized the effect of room structure in the neighborhood of the measuring point; in practice,
in a complex field two or more locations may be characterized by the same energy decay but a
different local energy transfer, owing to a different energy balance.

In order to include into the analysis the oscillating intensity evaluation, which cannot be di-
rectly obtained by the impulse responses, we devised a procedure for recovering the stationary
fields by implementing convolution techniques: in particular, for the broad band analysis we
made use of the Inverse Fast Hadamard Transform while the reconstruction of monochromatic
excitations was achieved through the FFT method. In this way, we could measure some addi-
tional field indicators, called � and�, expressing in dimensionless units the amount of oscillating
intensity with regard to the radiating intensity and to the total energy density, respectively.

The current aim is to follow the guidelines presented in this introductory study for under-
standing the role played in the traditional phenomenological laws of room acoustics (e.g. the
reverberation time formulas) by the quantities we have introduced. Furthermore, another fun-
damental issue to be considered concerns the investigation of the way how the energy transfer
affects the perception of sounds.

���
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1RWLRQV RI VLJQDO SURFHVVLQJ

In this short section we will present the theoretical fundamentals of signal processing, often
adopted in the study of linear systems. The treatment of the matter will be limited to those
particular aspects which can be of interest in our work; therefore, several formal details will be
omitted.

$�� /LQHDU G\QDPLF V\VWHPV
The study of many physical phenomena is carried out by investigating the relationship between
causes and effects [33] . This approach is the foundation of G\QDPLF V\VWHPV WKHRU\, mostly
adopted in engineering, but often extremely helpful in many other contexts. Considering for
instance the single variable case (e.g. time), the physical system may be depicted as a sort of
transducer transforming a certain function rE|� (LQSXW ) into the effect sE|� (RXWSXW ). The system
is then completely characterized once the specifications from obtaining the output from a given
input are known:

A drE|�o ' sE|�

where A is the operator which indicates a particular transformation law acting on r. A funda-
mental subclass of systems plays an important role: it is that one of OLQHDU V\VWHPV. A system u
is said to be linear if any linear combination of inputs gives an output which is the same linear
combinations of the outputs obtained from the single inputs. This property is extremely impor-
tant for deducing an explicit relationship between r and s : we can think to r as being composed
of several infinitesimal unitary excitations (impulses), so that we may consider their correspond-
ing elementary output and add them together in order to get the complete signal. Formally, we
have

rE|� '

] "

3"

_� rE� �BE|� � �

���
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which transformed by u gives

sE|� ' u drE|�o '

] "

3"

_� rE��u dBE|� � �o '

] "

3"

_� rE��}E|( � � (163)

where we have defined

}E|( |f� ' u dBE|� |f�o

that is the response to an impulse. } is the called the LPSXOVH UHVSRQVH of the system. This method
is particularly useful when dealing with systems described by linear differential equations. Let
us for example define the relation

M sE|� ' rE|� (164)

where M is a generic linear differential operator of order ? acting on the function s and r is a
known function. To the above equation may be possibly associated particular initial conditions,
taking the form of numerical values imposed at | ' f to the function itself and its derivatives
up to ? � �: for example, if Eq. (164) is of second order, these are of the kind: sEf� ' @ and
s|Ef� ' K. It is well known that the most general solution of Eq. (164) can be expressed as a
sum of the general solution of the KRPRJHQHRXV equation

M sE|� ' f (165)

satisfying the initial conditions, and a particular solution of the non-homogeneous equation.
Eqs. (164) and (165) may be interpreted from the systems theory viewpoint: the first one is
the representation of a linear dynamic system (for instance an electric circuit) with no external
excitation, while the second one represents the same linear system when a certain source s is
applied (for example an external voltage sent to the circuit). If then we call }E|c |f� the solution
of the equation

M}E|c |f� ' BE|� |f� (166)

we may express the particular s of Eq. (164) by a time integral analogous to Eq. (163) . } is
here called the *UHHQ IXQFWLRQ of Eq. (164) .

Eq. (163) can be simplified when the system is said to be WLPH LQYDULDQW � which means that
if sE|� is the response to rE|�, sE| � |f� is the response to rE| � |f� (for differential equations
this occurs when the coefficients are constants). In this case, the Green function doesn’t depend
on the parameter|f but just on the variable|. The integral takes the following form

sE|� '

] "

3"

_� rE� �}E|� � � '

] "

3"

_� }E��rE|� � � ' Er � }� E|� (167)

which is calledFRQYROXWLRQ.
Real systems must satisfy theFDXVDOLW\ SULQFLSOH, for which any physical agent cannot pro-

duce effects at times preceding its appearance. This means that if the input is zero for| 	 |f also
the output must be zero for| 	 |f. It can be seen that the conditions is satisfied if}E| � f� ' f,
so that the convolution expression becomes

sE|� '

] |

3"

_� rE��}E|� � � (168)
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$�� 7KH WUDQVIHU IXQFWLRQ
If we pass from the time to the frequency domain applying the Fourier transform to Eq. (167)
we obtain

8 E/� ' 7E/�CE/� (169)

where 8 , C, 7 are the Fourier transforms of s , }, r; in particular, C is the so-called WUDQVIHU
IXQFWLRQ : it’s meaning is fundamental in the understanding of linear systems from the frequency
viewpoint. Let’s suppose that the system under consideration be excited by a harmonic function
of angular frequencyl: i.e. rE|� ' e�l|. Therefore, we have7E/� ' 2ZBE/ � l�, which
inserted into Eq. (169) gives8 E/� ' 2ZBE/�l�CE/�. Transforming back in the time domain

sE|� ' CEl�e�l| (170)

which is still a harmonic function. This means that any harmonic signal is an eigenfunction
of a linear time invariant operator: the corresponding complex eigenvalue is just given by the
value of the transfer function at that particular frequency. It’s important to underline that one
sufficient condition for Eq. (169) to make sense is that the functions are absolutely integrable:
in particular, when this is true for}, that is] "

3"

_| m}E|�m 	4 (171)

the system is said to beVWDEOH : i.e. its response to any finite input is also finite. This is the most
frequent situation occurring in real systems and has an interesting consequence: for instance,
let’s suppose that an excitation, started at|� f, be switched off at a| ' f, so that we can write

rE|� '

�
e�l| | 	 f
f | � f

Thus, a particular solution for| � f is expressed by

sE|� '

] f

3"

_�i�l�}E|� ��

and it must be equal to the solution of the homogenous equation with appropriate conditions for
| ' f. The asymptotic behavior ofsE|� is given by

*�4
|<"
msE|�m � *�4

|<"

] f

3"

_�
��i�l�}E|� ��

�� ' ] f

3"

_�
k
*�4
|<"

��i�l�}E|� � �
��l ' f

where we have used the property*�4|<" m}E|�m ' f , which is a direct consequence of Eq. (171)
. This reasoning shows that a generic solution for a homogeneous stable system (WUDQVLHQW VWDWH )
is limited in time.

$�� 6LJQDOV DYHUDJLQJ
There are various procedures for computing the averages of signals: the most important distinc-
tion is related to the kind of mathematical function which describes the process under consider-
ation.
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$���� 'HWHUPLQLVWLF VLJQDOV

A GHWHUPLQLVWLF VLJQDO is formally expressed by a mathematical relationship, so that measuring
the corresponding physical quantity several times one obtains always the same value. Determin-
istic signals may be classified as being periodic (sinusoidal or complex periodic) or non periodic
(transient or almost periodic) [34] . The average of a generic deterministic stationary quantity
}E|� may be defined as

C ' k}l G' *�4
A<"

�

2A

] |fnA

|f3A

_| }E|� (172)

The limit in the integration interval is introduced in order to make the definition suitable also for
non periodic signals, in practice it is taken long enough to include every frequency of interest.

It often happens that the simple average doesn’t suffice for describing the mean behavior of
the quantity. For this reason it’s useful to introduce theFHQWUDO PRPHQWV CER� (R ' 2c �c � � �) [3]
:

CER� G' kE} �C�Rl (173)

If R ' 2 we obtain the usualYDULDQFH, which gives theURRW PHDQ VTXDUH
s
CE2�. This concept

is extendable also to vectors, whose central moments are tensors of orderR. In particular, for a
3D vector}E|� andR ' 2 one obtains the dyadic

'E2� ' }��i
� 
 i� }�� ' kE}� �C�� E}� �C��l (174)

The tensor' (from now on we will drop the superscript for brevity) is symmetric and semi-
definite positive; this comes out if we interpret the average as a scalar product in a Hilbert
space so thati}��j is the Gram matrix of the vectors}� �C�, whose determinant is positive or
null. Furthermore, the tensor is definite positive if and only if the three components are linearly
independent. It is then possible to find an orthogonal operatorR transforming the tensor in
diagonal form and subsequently calculate the square root. In this way, after having performed
the inverse transformation, one may define the root mean square tensor:

� G' RA
s
'_R � -��i

� 
 i� '_ ' R'RA (175)

in fact�� ' RA
s
'_RRA

s
'_R ' RA'_R ' ', so that it is possible to write� G'

s
' 'sk} 
 }l.

It is useful to represent graphically the tensor' by means of the so-called indicatrix quadric:

 �'3�n  ' � (176)

where is a variable vector representing a physical quantity of the same kind as} and'n is
the restriction of' to the subspace of positive eigenvaluesb� of �. If these are all positive
(i.e. 'n ' ') the quadric is an ellipsoid having the principal axis along the eigenvectors � and
length2b�, while it reduces to an ellipse, a segment or a point if it happens that one, two or all
b� are zero respectively.

A particularly interesting case occurs when all components of} have the same time depen-
dence, that is}E|� ' }E|��: then, the tensor� becomes:

� '
t


E} �C�2
� m�m� �

m�m 

�

m�m
�

(177)
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Here the only non zero eigenvalue is b '
t


E} �C�2
� m�m, corresponding to the eigenvector

�.

$���� 5DQGRP VLJQDOV

We speak of random signals when the physical phenomenon gives data which cannot be de-
scribed by an explicit relationship and each observation produces an unique result. Formally, it
is represented by a VWRFKDVWLF SURFHVV, consisting of a random variable (%E|�) with the time | as a
parameter; this quantity has at any instant a definite VDPSOH VSDFH � the ensemble of values that
the variable can take) and a probability density function sE%c |�, representing the rate of change
of the probability when varying % itself and keeping the time fixed [34] . The main method for
accomplishing a quantitative analysis of a random process is based on the HQVHPEOH DYHUDJH,
that is an average executed on the overall ensemble at a certain time; it is defined for a generic
function �E%� of the random variable:

.E�� '

] "

3"

_%�E%�sE%c |� (178)

The most usual quantities derived by this general definition are the following ones:

� DYHUDJH : >%E|� ' %E|�

� TXDGUDWLF DYHUDJH : �%E|� ' %E|�2

� YDULDQFH : j2%E|� ' d%E|�� >%E|�o2 ' �%E|�� >2%E|�

� DXWRFRUUHODWLRQ � �%E|�c |2�'%E|��%E|2�

In the last case the integration is carried out weighting with the probability density
sE%�c |�(%2c |2�. In order to compare the relative behavior of two different stochastic processes
it is necessary to define the following functions too

� FRYDULDQFH� j%+E|� ' d%E|�� >%E|�od+E|�� >+E|�o

� FURVV�FRUUHODWLRQ � �%+E|�c |2�'%E|��+E|2�

Among the stochastic processes a fundamental role is played by those named VWDWLRQDU\,
which are defined by the following properties:

(1) sE%c |� ' sE%�
(2) sE%�c |�(%2c |2� ' sE|2 � |��

the first one implies: >%E|� ' >%, �%E|� ' �%, j2%E|� ' j2% (mean values independent of
time), while the second: �%E|�c |2� ' �%E|2 � |�� (cross-correlation dependent from the time
shift only).

We have seen that the statistical analysis of random data requires the knowledge of the prob-
ability density function, this means that practical calculations have to be performed over a large
number of samples. Nevertheless, one almost always has a single measurement, that is just one
record, so the quantities mentioned above cannot be obtained. Fortunately in most cases one
deals with a subclass of stochastic stationary processes, called HUJRGLF, for which the ensemble
average coincides with the time average over a single infinite record. This justifies the following
relations:

� >% ' k%l ' *�4
A<"

�
2A

U A
3A

_| %E|�
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� �% ' k%2l ' *�4
A<"

�
2A

U A
3A

_| %2E|�

� j2% ' kE%� >%�
2l ' *�4

A<"

�
2A

U A
3A

_| d%E|�� k%lo2

� �%E�� ' k%E|�%E| n ��l ' *�4
A<"

�
2A

U A
3A

_| %E|�%E| n ��

$�� &RQWLQXRXV DQG GLVFUHWH )RXULHU VHULHV
It’s well known that a periodic distributions of one real variable, let’s say time, having period
A (sE|n A � ' sE|�) can be expressed as a sum of complex exponential [33] :

sE|� '
�

2Z

"[
?'3"

k?i
�?l| l '

2Z

A
(179)

where

k? '
�

A

] A*2

3A*2

_| sE|�i3�?l| (180)

If *�4?<" k? ' f in some way, thens is an ordinary function. Otherwise, if*�4?<" k? '
SJ?r|� or even diverges (at most as a power of?), thens is properly a distribution. In this case
Eq. (179) converges in the sense of distribution theory. The Fourier transform ofs (8 E/�) is a
singular distribution consisting of a sequence of equidistant pulses

8 E/� '
"[

?'3"

k?BE/ � ?l� (181)

so that it is thus customary to consider the sequenceik?j itself as the Fourier transform ofs .
We also note that Eq. (179) , which is the usual)RXULHU 6HULHV expansion of a periodic function,
can be thought of as a special case of the Fourier integral.

We now ask ourselves what happens whensE|� is a singular distribution of the form

sE|� '
"[

?'3"

%E?�BE|� ?{|� (182)

where{| ' A*� where� is an integer andi%E?�j a periodic sequence, i.e. such that:

%E?� ' %E?n�� (183)

The situation is of great practical interest, because in such a way it is possible to represent a
periodic signal properly sampled and discretized [25] .

It is still possible to write the function or, if we prefer, the sequence itself, in terms of a Fourier
series, but now the frequencies involved are all multiplies of the fundamental frequency2Z*�
of i%E?�j and for this reason the sum consists of just those� distinct exponential functions
with a period that is an integer submultiple of� . It follows:

%E?� '
�

�

�3�[
&'f

fE&�i�E2Z*��?& (184)
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which is the 'LVFUHWH )RXULHU 6HULHV representation of the sequence %E?�. ifE&�j is a periodic
sequence of period � representing the Fourier coefficients of i%E?�j: it is given by an inverse
transformation analogous to Eq. (180) :

fE&� '
�3�[
?'f

%E?�i3�E2Z*��?& (185)

We have so realized that the frequency content of our sequence is discrete and finite:

/& '
2Z&

A
'

2Z&

�{|
& ' fc �c 2c � � � � � �

$�� :LHQHU�.KLQFKLQ UHODWLRQV
Spectral density functions for stationary random processes can be defined in a number of ways
[34] ; among these, the one based on the Fourier transform of the correlation function is the
most useful from a formal point of view. Let’s consider a stationary random processi%&E|�j and
calculate its autocorrelation function�%E|�, furthermore let’s assume this quantity be absolutely
integrable, i.e. ] "

3"

_| m�%E|�m 	4
TheWZR�VLGHG DXWRVSHFWUDO GHQVLW\ IXQFWLRQ of i%&E|�j is defined as

7%E/� '

] "

3"

_|�%E|�i
3�/| (186)

its inverse is of course

�%E|� '
�

2Z

] "

3"

_/ 7%E/�i
3�/| (187)

These relations, together with the analogous ones for the cross-spectral density, are referred to
in literature as the:LHQHU�.KLQFKLQ WKHRUHP � from the name of the two mathematicians who
proved them in the early Thirties.

In the mathematical context it is advantageous to deal with functions defined both for pos-
itive and negative frequencies, since calculations are often simplified by the use of complex
exponentials. Yet, we know that just the positive part makes physical sense in practice, so it is
customary to define also theRQH�VLGHG DXWRVSHFWUDO GHQVLW\ IXQFWLRQ �

C%E/� '

�
27%E/� f � / � 4
f otherwise

Thanks to the symmetry properties of correlation function,7%%E/� is a real even function of/,
it follows:

C%E/� ' e

] "

f

_|�%E|� ULt/|

while

�%E|� '
�

2Z

] "

f

_/C%E/� ULt/|
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which at | ' f becomes

�%Ef� ' .
�
%2E|�

�
'

�

2Z

] "

f

_/C%E/�

Among the various kinds of processes, we here want to mention two remarkable examples. One
is the so-called ZKLWH QRLVH � defined as a stationary random process with a constant autospectral
density and, consequently, �%E|� 2 BE|�. The other one is the case of a harmonic function, for
which �%E|� 2 t�?El|� and 7%E/� 2 BE/ � l�.

$�� 6SHFWUXP RI DQ 0/6 VLJQDO
Now let’s take into consideration one interesting practical case, encountered in Chap. 3: the
spectrum of the MLS signal. Let’s start calculating the autocorrelation function which, being
the signal periodic, is a periodic signal as well. It can be easily demonstrated [23] that for an
MLS sequence�� having period� ' 26 � �

���
E?� '

�

�

�3�[
,'f

rE,�rE, n ?� '

;A?A=
� if ? ' fc �c 2�c � � �

� �

�
otherwise

where the sum is performed over the� elements of the sequence. We obtain the spectrum using
the discrete Fourier series:

C��
E&� '

�3�[
?'f

���
E?�i3�E2Z*��?& '

;AAAA?AAAA=
��

�3�[
?'�

�

�
' �� � � �

�
'

�

�
if & ' f

��
�3�[
?'�

i3�E2Z*��?&

�
'

� n �

�
if f 	 & � � � �

where the bottom equality is due to the relation

�3�[
,'�

i3�E2Z*��,& ' i3�E2Z*��& �� i�E2Z*��E�3��&

�� i3�E2Z*��&
' ��

For instance, in the case where� ' ., mentioned in Sect. 3.3.2, we have

��.
� d�c��*.c��*.c��*.c��*.c��*.c��*.o

C�.
� d�*.c H*.c H*.c H*.c H*.c H*.c H*.o

$�� 'LVFUHWH )RXULHU 7UDQVIRUP DQG FRQYROXWLRQV
We have treated the frequency representation of periodic sequences: we now want to expand the
same formalism in order to include finite sequences [25] . In practice, a finite sequence%E?�
of length� (f � ? � � � �) is thought to be one period of the periodic sequence built by
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extending %E?� indefinitely. The expansion of %E?� has a unique DFS representation, so that its
period may be taken as the transform of the initial finite sequence: this is called the 'LVFUHWH
)RXULHU 7UDQVIRUP (DFT) of %E?� (see Eqs. (184) and (185) ). Let’s now see the way how to
express convolutions between finite length sequences; for instance, consider a finite input signal
rE?� and a certain impulse response}E?�, both of length� . Their convolution is still a finite
sequence, though of length2� � �: it is written like that

sE?� '
�3�[
6'f

rE6�}E?�6� (188)

According to the general relation defined by Eq. (169) , we can transform Eq. (188) in the
frequency domain:

8 E&� ' 7E&�CE&�

It is then straightforward to verify that the original signals is given by the inverse transform
(IDFT) of the sequence8 , provided that the DFT7 andC, as well as the IDFT itself, are
computed on the basis of at least2� � � points, that is extending the length of the original
sequences with� � � zero elements. In short:

7E&� '
2�32[
?'f

rE?�i3�E2Z*��?& CE&� '
2�32[
?'f

}E?�i3�E2Z*��?&

sE?� '
�

2� � �

2�32[
&'f

d7E&�CE&�o i�E2Z*��?& ? ' f � � � 2� � � (189)

Actually, the calculation of a� points DFT requires� 2 arithmetical operations, so that prac-
tically, when� increases, the time spent by a normal computer may be too long; fortunately,
very efficient algorithms can be employed for reducing this number: the most common and ef-
fective one, discovered in the mid Sixties, allows us to obtain the DFT of a� ' 26 sequence
through just�*2 *L}2� operations. These procedures, called)DVW )RXULHU 7UDQVIRUPV (FFT),
are currently implemented in several digital signal processing programs. Nevertheless, when
one has to convolve two sequences of unequal lengths, a further improvement of the procedure
represented by Eq. (189) may be necessary: this mostly happens when one of the two sequences
is of indefinite duration, like for example during the stationary acoustic excitation of an envi-
ronment. One procedure for accomplishing the convolution consists of performing many FFTs
on consecutive sections of the signal, rather than on the signal as whole, and then adding the
single convolved parts together in an appropriate way (RYHUODS�DGG method). In practice, one
may divide the sequencerE?� in many segments of lengthu:

rE?� '
"[
�'�

r�E?�

wherer�E?� ' rE?� for �u � ? 	 E�n ��u and zero otherwise. It follows

s ' r � } '
"[
�'�

r� � } '
"[
�'�

s�
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),*85( ��� Flowgraph of the convolution procedure through the overlapp–add method.

Being } of length � and r� of length u, each section s� turns out to be of length un���, thus
it has to be computed by means of a u n� � � points FFT. The sum must then be performed
taking into account that the last � � � points of each section have to be superimposed on the
first � � � points of the next one (s�n�). The entire procedure is synthetically represented in
Fig. 52.
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