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Summary
A general expression of acoustic radiation pressure is here derived on the basis of the linear theory of classi-
cal fields. Following this theory, the acoustic energy, the sound intensity and the sound momentum density are
introduced, together with the wave-momentum flux density tensor, as components of a acoustic
energy-momentum tensor in a unified space-time approach, formally similar to the relativistic formulation of
electromagnetism. The related conservation laws are then expressed by the condition of vanishing 4-divergence
of this tensor, showing in particular that the so-called radiation pressure is nothing but a consequence of the mo-
mentum conservation law for the acoustic field. As an application, the radiation pressure is computed explicitly
in two cases: a plane wave reflected on a flat wall and the field in the interior of an open organ pipe. In the latter
case, indirect measurements of the radiation pressure have been also performed by an intensimetric technique,
allowing to determine the complex reflection amplitude at the pipe’s end. Finally, as an appendix of the paper, the
angular momentum conservation and the analogy between the acoustic and electromagnetic radiation pressure
are analyzed to some extent.
PACS no. 43.25.Qp

1. Introduction

Following our previous works, mainly concerned with the
rigorous definition of time averaged energetic properties
of general linear acoustic fields (e.g. [1], [2], [3], [4]), the
first aim of this paper is to cast a link between the energy
and momentum density concepts from the point of view of
their conservation laws formulated in the so-called acous-
tic space-time, to be defined in subsection 2.2. The accom-
plishment of this task has allowed us to give a contribution
to the study of a classical research subject: the acoustic
radiation pressure, a physical quantity that in our view is
simply a consequence of the momentum conservation law
for acoustic fields. Therefore, this quantity plays a role in
all fields of acoustics, including the audible linear domain,
being complementary and quite similar to that played by
intensity for energy conservation.

The second aim of this paper is to express the radia-
tion pressure as a time-dependent quantity in terms of the
solution of the wave equation with appropriate boundary
conditions, without relying necessarily on the two histor-
ical definitions of radiation pressure, due to Rayleigh and
to Langevin, which often predominate in the acoustical lit-
erature [5]. Furthermore, our approach can be extended in
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principle to nonlinear acoustics, since it is based on the
general physical principles of field theory.

The theoretical definition of acoustic radiation pressure
given here follows the development of the analogous quan-
tity for the electromagnetic field, since it is based on the

wave-momentum flux density tensor as a part of the
energy-momentum tensor. In the electromagnetic

case, the momentum flux density tensor was introduced
by James C. Maxwell in his famous Treatise on Electricity
and Magnetism, published in 1873 [6], and was there sub-
divided in two parts, treated separately: the electric part,
called the electrostatic stress, and the magnetic one, or
electrokinetic stress (see Art.s 105-111 and 639-646 of the
Treatise). In this way, Maxwell obtained an expression of
the force which arises in the field itself due to the pres-
ence of electromagnetic waves, the so-called “radiation
pressure” (Art.s 792-793). According to this conception,
radiation pressure turns out to be a non-linear effect, but
just in the sense that it is a second-order quantity derived
from a linear wave equation.

In the linear acoustics context this approach allowed
us to obtain a time-dependent form of the same quantity,
which has been named acoustic radiation pressure thanks
to the electromagnetic analogy. One interesting point is
that the present treatment is formally in agreement with
the one given by Beissner [7], which follows rigorously
from the fluid mechanical theory based on the momentum
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flux density as given for instance in [8]. In fact, the two ap-
proaches can be considered equivalent for they lead to the
same time-average expression of the tensor, whose surface
integral is properly called “radiation force” by Beissner,
due to its vectorial nature.

Besides classical references on radiation pressure where
the subject is mainly considered and usually presented as
a linear or non-linear effect, arising anyway from a par-
ticular choice of the field boundary conditions ([9], [10],
[11], [12], [13]), the treatment of the acoustic radiation
pressure from the point of view of the general field the-
ory most similar to that presented here is due to Morse
and Ingard [14]: there, the Lagrangian density, the acous-
tic stress tensor and other quantities and equations related
to linear acoustic fields are introduced regardless of any
boundary condition. Moreover, the validity of the expres-
sions reported for radiation pressure by Morse is limited
to the case of plane waves. Radiation pressure is treated in
the same framework also by Brillouin [15], but only in the
case of elastic solid bodies. Anyway, unlike the present
paper, both the above treatments follow the standard 3-
dimensional approach.

As regards the content of the paper, the Lagrangian the-
ory of acoustic fields and the conservation laws of energy
and momentum are treated in Sect. 2, the general proper-
ties of acoustic radiation pressure are described in Sect. 3.
Section 4 is then concerned with radiation pressure pro-
duced by a plane wave incident on a flat wall: in particu-
lar, the dependence on boundary conditions is discussed.
Finally, Sect. 5 treats the case of the acoustic field inside
an organ pipe: a simple theoretical model for describing
the inner field and an indirect method for measuring ra-
diation pressure by means of the intensimetric technique
are presented. In the same section, it is shown how this
method can be practically employed for determining the
impedance of the upper end of the pipe.

For sake of completeness, two appendices at the end of
the paper briefly present a derivation of the conservation
law of the acoustic angular momentum and a short com-
parison of the acoustics radiation pressure with the elec-
tromagnetic case.

The general treatment of this subject requires a certain
knowledge of the foundations of the classical theory of
fields, as it can be found for instance in references [16],
[17]; nevertheless, some efforts will be spent for present-
ing the subject in a self-contained form in order to keep
the references to other works to a minimum.

2. Lagrangian theory of acoustic fields

2.1. Review of the linear equations of acoustics

As a starting point of the whole discussion, it is convenient
to review the basic principles and assumptions which the
linear theory of acoustic fields is based upon. We consider
the case of an isentropic motion taking place in a perfect

gas. The three fundamental equations are:

(1)

(2)

(3)

Equation (1) is the equation of motion (Euler equation),
equation (2) is the mass conservation equation and equa-
tion (3) is the equation for an adiabatic trasformation.
From the assumption that the acoustic perturbations ,
are small compared to the equilibrium values of the un-
perturbed fluid ( , ), which is also considered uniform
and still (i.e. , , ), the equations
above can be approximated to the first order as

(4)

(5)

(6)

The d’Alembert equation for the acoustic variables can
then be derived (see e.g. [14] p. 243)

(7)

(8)

(9)

where the symbol stands for the Laplacian operator
i.e. the divergence of a gradient.

In the context of linear acoustics a real scalar field
(the kinetic potential) can be introduced in such

a way that the perturbations of pressure, density and ve-
locity are given by:

(10)

The kinetic potential too satisfies the d’Alembert equation

(11)

The energy and momentum of the acoustic field are de-
fined by isolating from the corresponding quantities re-
lated to the fluid in motion the terms due to the acoustic
wave only. The acoustic energy density is calculated
from the quantity , where is the spe-
cific internal energy (energy per unit mass) and , are
the variables describing the fluid motion. Expanding in
a Taylor’s series in the acoustic variables and stopping the
process to the second-order approximants one obtains

(12)
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where is the characteristic impedance of the
medium. The energy density is made of a compres-
sional part and a kinetic part :

(13)

It will be shown below that the energy density of equation
(12) is linked to the acoustic field in the linear approxi-
mation, since the d’Alembert wave equation is deducible
from the Lagrangian density through the vari-
ational principle.

The wave-momentum is obtained in an analogous way
from the fluid momentum density .
Integrating on a sufficiently large space region, it can
be seen that the total instantaneous momentum of the fluid
reduces to the integral of the term . As a conse-
quence, is interpreted as the sound momentum density.

2.2. Geometry of acoustic space-time

We note that the d’Alembert equation (11) can be consid-
ered as a description of a real, scalar, massless field in the
language of relativistic quantum field theory. Therefore,
it is possible to describe acoustic phenomena within the
Lagrangian framework treated in standard textbooks [16],
[17]: this can be achieved simply by replacing the speed
of light with the speed of sound. Of course, the acoustic
case presents only a formal analogy with relativity, since
the Lorentz transformations obtained in this way, to be re-
ferred hereafter as acoustic Lorentz transformations, still
form an invariance group of the wave equation, but do not
connect inertial reference frames. The physical meaning
of such transformations is related to the study of the ra-
diation from a point source, moving with constant speed
(Ref. [14], Sect. 11.2). From another point of view, acous-
tic Lorentz transformations connect all space-time coor-
dinates, which describe sound propagation with the same
speed and therefore leave invariant the wave equation.

Since the common notation of relativistic field theory
is not usual in acoustics, a short account of it is given
in the present and in the following subsections. Let us
first introduce the ordinary euclidean 3-dimensional space

, made of the real -dimensional vector space
with the euclidean metric . Any vector in can be

represented in terms of any set of three linearly indepen-
dent vectors and components as

(14)

Here, we have introduced the summation convention in ,
meaning that a pair of equal upper and lower Latin indices
denotes summation over all the values from to . The
euclidean metric is defined by means of the ordinary scalar
product

(15)

as (16)

where are the components of the euclidean
metric tensor

(17)

where is the dual basis of , defined by

(18)

in terms of the duality mapping and denotes the ten-
sor (or diadic) product. The matrix is non-singular,
positive-definite and in Cartesian coordinates is repre-
sented by the unit matrix

(19)

Vectors of the dual space are represented by

(20)

where the components are connected to by
, so that in Cartesian coordinates . The com-

ponents transform under linear transformations accord-
ing to the same law as the basis vectors and, therefore,
are called covariant components, in order to distinguish
them from the contravariant components , which trans-
form in an opposite way compared with . In this way, an
invariant vector is obtained. The tensor belongs to
the space .

To describe an event which happens at the point and at
time , it is convenient to introduce a fourth dimension, la-
belled by , and set , where is the speed of sound.
Thus, the coordinate represents the distance covered by
sound in time . The 4-dimensional real space , whose
vectors have components is what we mean
by acoustic space-time. Let us now represent in terms of
the basis vectors as

(21)

Here, the definition introduces the summation convention
in the acoustic space-time, meaning that a pair of equal
upper and lower Greek indices denotes summation on all
values from to . In order to leave the wave equation
invariant under acoustic Lorentz transformations, we in-
troduce in a pseudo-euclidean metric , thus obtain-
ing the acoustic Minkowski space The
pseudo-euclidean metric is defined by means of the non-
positive-definite scalar product

(22)

as

(23)
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where are the components of the pseudo-
euclidean metric tensor

(24)

and are the dual basis vectors of

(25)

with the standard matrix representation of the metric ten-
sor

(26)

The matrix is still non-singular, but not positive-
definite any more. The components of the inverse met-
ric tensor are defined by

(27)

and therefore . Let us denote by the dual
vector of , expressed by

(28)

its components are given by

(29)

Differentiation operators with respect to coordinates of
spaces and are denoted by

(30)

2.3. The wave equation in four-dimensional form

Coming back to the acoustic quantities, the pressure and
velocity perturbations may then be written as:

(31)

(from now on the primes on the acoustic quantities will be
omitted for simplicity, since the context is now clearly that
of linear acoustics).

The kinetic, potential and total energy densities, , ,
, of an acoustic field in the lowest order approximation

are given by the second order quantities (see equation 12)

(32)

(33)

(34)

With the above positions, the Lagrangian density
can be written as an expression which is invariant

under acoustic Lorentz transformations:

(35)

The wave equation may be obtained from the La-
grangian density by means of a well-known variational
principle [16],[17]: this leads to the Euler-Lagrange equa-
tion

(36)

which in our case takes the form of the above-mentioned
d’Alembert equation

(37)

The generalized momentum is a vector , whose
components are defined as

(38)

Its component is equal to the acoustic pressure di-
vided by

(39)

while the other components are equal to the momentum
density of the gas:

(40)

It is then easy to see that the wave equation (equation 37)
coincides with the condition of null divergence of the gen-
eralized momentum in :

(41)

We want now to illustrate the physical meaning of the
squared length of a vector :

(42)

The set of all vectors of vanishing length is the four-
dimensional cone of equation , analogous to
the light-cone of the relativistic theory, with axis in the
direction of -axis and vertex in : this is a char-
acteristic surface of the wave equation. The transforma-
tions leaving invariant the scalar product of equation (42)
and the characteristic surfaces of the wave equation are
just the acoustic Lorentz transformations. The physical
meaning of the cone, which in our case should be called
sound-cone, is related to the causality principle: only all
points inside the future sound-cone, i.e. points such that

, , can be the support of an acoustic
field (effect), produced by a source (cause) placed at the
point and switched on at time .
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2.4. The four-dimensional energy-momentum tensor
and conservation laws

A well known result of field theory is the following. If
the Lagrangian density is invariant under coordinate or
field transformations of a certain group, there exists a con-
served quantity, whose conservation law is expressed as
the vanishing of the divergence of a certain tensor (Emmy
Nöther’s theorem [16]). The Lagrangian of equation (35)
and the wave equation (equation 37) are invariant under
both acoustic Lorentz transformations (see equation A1 in
Appendix) and translations in

(43)

The relation of the first invariance property to angular mo-
mentum conservation will be treated in Appendix, with
the purpose of displaying the generality of the field the-
oretical method. The conserved quantities corresponding
to the second invariance property are the acoustic energy
and momentum; the tensor, whose vanishing divergence
represents the related conservation laws, is the energy-
momentum tensor

(44)

The component is equal to the acoustic energy density
:

(45)

The other components are

(46)

where the -vector

(47)

is the acoustic energy-flux density (instantaneous acoustic
intensity) and the -vector , defined as

(48)

is the acoustic momentum density.
The tensor can be represented by the matrix

(49)

where the components of the vector
occupy the last three places of the first row and of the first
column; is the tensor of space , represented by

(50)

and . Note that Morse and Ingard denote the
tensor by and call it wave-stress tensor [14].

Let us now examine some properties of the tensor .
First of all, its trace is equal to twice the Lagrangian den-
sity:

(51)

We now prove that the divergence of vanishes identi-
cally. Putting , we find:

(52)

The component of equation (52) can be written in
the form

(53)

and therefore represents the conservation law of acoustic
energy.

The components of equation (52) can
be written in vector form as

(54)

so that this equation represents the acoustic momentum
conservation law, if the vector is interpreted as a
force density. The integral form of equation (54) can be
found by integrating this equation on any fixed volume :

(55)

Denoting by the surface enclosing the volume , by
its normal unit vector pointing outwards of and putting

, ,
equation (55) can be rewritten in either form

(56)

(57)

where we have used the divergence theorem to obtain
equation (57). In equations (56), (57) the left-hand sides
are the time derivative of the momentum produced by the
acoustic wave in the volume , so that the right-hand
sides represent the force of the radiation field, expressed
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by means of a volume force in the first equation and a sur-
face force in the second one. Thus, the vectors and are
respectively the volume force density and the surface force
density of the acoustic field, the latter representing the in-
stantaneous acoustic radiation pressure. Note that the time
average value of integrated over a surface of finite area
has been called radiation force by Beissner [7].

Since , we can state that the variation per
unit time of the wave momentum in volume is equal to
the flux of the tensor through the surface . Therefore,

represents the wave-momentum flux density entering
and so will be called in the following. Keeping in mind
equation (50), the identities of vectorial analysis

(58)

( denotes the vector product) and the condition of irro-
tational motion , we find the following expres-
sion of the force density

(59)

whose second term is related to the reactive intensity [1].

2.5. Conservation laws derived from linear acoustic
theory

We now want to check that the conservation equations ob-
tained above as a consequence of the invariance properties
of the Lagrangian density can also be directly calculated
from the definition of sound energy in linear acoustics (see
subsection 2.1).

The first relation to consider is the energy conservation:
this may be found from the time derivative of the energy
density expressed by equation (12):

(60)

where in the right-hand term the substitution
has been made, according to the linear approximation of
equation of state (equation 6). Taking now into account
the first-order versions for the mass conservation equation
(equation 5) and the Euler equation (equation 4) one ob-
tains

(61)

from which it can be inferred that the quantity
expresses the energy flux density (instantaneous intensity)
for the acoustic field described by the linear wave equation
(equation 11).

As regards the sound momentum density , the
time derivative is given by

(62)

where again equations (5) and (4) have been used. Thanks
to equation (58) it is then easily seen that the two terms of
the last expression can be written as follows

(63)

(64)

We then obtain the relationship

(65)

which confirms that (see equation 50)
represents the wave-momentum flux density for the linear
acoustic field.

3. Acoustic radiation pressure

We have seen that the symmetric tensor (equation 50) is
the wave momentum flux density and therefore the quan-
tity

(66)

is the acoustic radiation pressure, that is the force den-
sity exerted on an arbitrary ideal surface (not necessarily
a physical target!) having normal within the field itself.
Furthermore, since the wave momentum flux density at the
surface of a possible wall bounding the sound field will de-
pend on the boundary conditions there, it is clear that the
radiation pressure in turn will also depend on such condi-
tions: in particular, in section 4 it will be shown that it is
maximum when the wall is perfectly reflecting.

Let us now consider the directional properties of radi-
ation pressure. We recall that any tensor

can be decomposed in a unique way into
the sum of an isotropic one (the
components of an isotropic tensor, by definition, are in-
variant under rotations), an antisymmetric one

and a symmetric, traceless one
:

[18]. The tensors
transform under rotations according to the -
dimensional irreducible representations of the rota-
tion group: this means that the new components of a partic-
ular are linear combinations of the old components
of the same only.
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The decomposition of into irreducible parts is

(67)

As regards the trace, it is easy to show that, from the
relations and , it follows

and .
The radiation pressure of on the surface element

having normal is

(68)

This part of is called isotropic, since it has the direc-
tion of and its modulus does not depend on . From
the expression of equation (68) it may be observed that
the isotropic radiation pressure acts as a compression if

and as an expansion in the opposite case.
For example, in a plane travelling wave the first case holds
true, since , while in a standing wave there is
a compression in a velocity node and an expansion in a
pressure node. In any case, from equation (68) it follows

(69)

The radiation pressure due to is given by

(70)

where is the component of in the direction of
. It should be remarked that is always normal to the

surface, while contains a part in the direction of and
a part in the direction of . The normal component of
is

(71)

Assuming that has a constant direction, the quantity of
equation (71) vanishes if the orientation of the surface is
chosen in such a way that , or ,
where is the angle between and . In this case equa-
tion (71) represents a force per unit area which is tangent
to the surface so that is the shear stress due to acous-
tic radiation. The right-hand side of equation (71) can be
rewritten in the form , where is
the Legendre polynomial of order . Therefore, the mean
value of the normal component with respect to directions
in half-spaces or vanishes:

(72)

The normal component of is given by

(73)

By averaging this expression with respect to directions in
either half-space , or , it may be
found the same value as the isotropic part :

(74)

The normal component of radiation pressure for particular
values of is:

(75)

From equation (73) one finds that for any type of wave the
radiation pressure is bounded by

(76)

In particular, at the velocity nodes of a standing wave

(77)

for any surface orientation. For the same wave, at the
sound pressure nodes one has

(78)

If at a certain the condition (i.e. ) is
satisfied, as it happens for instance at any point of a plane
progressive wave, the normal radiation pressure is

(79)

In the same case, it follows from equation (68) or equa-
tion (69) that the isotropic normal radiation pressure is a
compression, whose modulus is equal to one third of the
energy density: .

It is evident from the above expressions that the phys-
ical meaning of the radiation pressure is fully understood
from the point of view of field theory only, i.e. as already
remarked, with no reference to a material target whatso-
ever.

219



ACTA ACUSTICA UNITED WITH ACUSTICA Stanzial et al.: Four-dimensional treatment of linear fields
Vol. 88 (2002)

4. Radiation pressure of a plane reflected
wave

The radiation pressure will be now computed in a ba-
sic physical situation, in order to display its dependence
on the particular geometry and boundary condition. Let
us consider the radiation pressure produced by a plane,
monochromatic, travelling wave, which is partially re-
flected and partially absorbed by an infinite flat wall .
Let the surface of the wall be defined by the equation

( is the normal unit vector), and the medium
be on the negative side of : . Expressing the
kinetic potential as a complex quantity for calculation
convenience, the boundary condition may be written as

(80)

where represents the surface
specific impedance. The kinetic potential of the wave is
written as a superposition of the incident and the reflected
wave. Let be the amplitude of the gas movement of the
incident wave and be the wave vector, forming an angle

with the normal , . Writing
, we have

(81)

where is the wave vector of the re-
flected wave and is the complex reflection amplitude,
expressed in terms of by

(82)

Writing in polar form as ( ),
is the ratio between the amplitudes of the two waves,

is the reflection coefficient and is the phase difference on
the wall between the reflected wave and the incident one.
Besides the normal , we introduce a second unit vector

orthogonal to and laying in the
reflecting plane . The time-averaged value of
the normal component of radiation pressure in any position

can be easily computed from equations (66) and (81):

(83)

The corresponding tangential component
is

(84)

5. Radiation pressure inside an organ pipe

In this Section we shall consider a second case of phys-
ical interest, namely that of radiation pressure inside an
open organ flue pipe during a steady excitation. Since the
technology for a direct measurement of radiation pressure

in the audible range of linear acoustics is not yet avail-
able, we have performed an indirect measurement of the
normal component, through the time-averaged values of
the squared acoustic pressure and particle velocity, using
equation (73). This measurement is only intended as an il-
lustration of the connection between intensimetry and ra-
diation pressure.

5.1. Theoretical basis

The acoustic field inside the organ pipe can be found –
for each single frequency component – by assuming that
the motion is one-dimensional between the two extremi-
ties ( , ) and the source is lumped at the mouth
end , producing there a pressure excitation
[19]. As regards the boundary conditions, they are usually
given in terms of the complex impedances and at
the two ends.

All acoustic quantities can be found by solving the fol-
lowing boundary-value problem for the kinetic potential

, :

(85)

The solution can be written in the form

(86)

where and are complex constants and , the
excitation circular frequency, is real. Substituting this so-
lution into the boundary conditions, one finds

(87)

Here, the second equation can be solved for to give

(88)

Taking into account the relationship connecting the re-
flection amplitude at the upper end, , to the
impedance , i.e.

(89)

the constant can be expressed in terms of as
, with

(90)

We remark that depends only on the boundary con-
dition at , while the amplitude depends on both
boundary conditions.
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Let us now see how this simple model gives us the pos-
sibility of employing the radiation pressure relations to de-
termine experimentally the reflection properties of the up-
per end. Expressing in polar form, , and
putting , equation (86) can be written as

(91)

which, redefining the time variable as
and using the substitution

(92)

takes the more familiar form

(93)

Thus the solution of problem (85) is simply given by the
superposition of
an incident plane wave
and a reflected wave
it is therefore a particular case of the phenomenon already
treated in the previous Section. As we are going to see,
the complex reflection amplitude of the upper
boundary of the pipe can be determined by performing in-
tensimetric measurements of radiation pressure in the field
expressed by equation (93). On the other hand, thanks to
equation (89), the study of is equivalent to the study
of , so that, we may focus our attention on the former
parameter only.

Since and , the
time averaged second order quantities , and

are obtained from equation (93) as:

(94)

(95)

(96)

Using equations (94), (95) and equation (75), the normal
component of mean radiation pressure on a plane orthog-
onal to the pipe axis can be easily computed as

(97)

where . From this expression and equation (96),
we find the incident wave amplitude and the reflection
modulus as:

(98)

which can be determined experimentally by means of the
intensimetric technique.

For the determination of the phase shift , the quantity
has to be measured on a plane oriented in a direction

different from the previous one; in particular, it is conve-
nient to choose a plane parallel to the wave axis, so that the
normal radiation pressure on it is given by the time average
Lagrangian density (see equation 75):

(99)

From equations (99) and (98) it follows

(100)

and thanks to equation (92) one finally finds

(101)

5.2. Experimental setup and measurements

Through the simple model explained above, and in partic-
ular by direct use of equations (98) and (101), it is possi-
ble to determine the reflection properties of each frequency
component of the pipe simply by performing indirect mea-
surements of radiation pressure in a given point inside the
pipe. In order to test its effectiveness, the procedure was
applied to a wooden pipe of length , with open
extremity, internal square cross section of
and a fundamental frequency of (the musical note

in the ft rank). A series of measurements of the in-
ner field were performed following the well-known two-
microphones technique developed for intensity measure-
ments [2]: the study was carried out under steady sound
conditions, while air-supplying the pipe by means of a
small blowing machine. In order to insert the intensity
probe (an axial B&K 4135 in the side-by-side configura-
tion) into the pipe, a row of holes has been made on one of
its sides. They were distant from one another, with
a diameter of about . The two probe microphones,
tightly fixed together in a plastic holder, were then inserted
into pairs of adjacent holes, as shown in Figure 1: the non-
standard distance of between adjacent holes was
set for keeping minimum errors up to about . Dur-
ing each measurement, all the unused holes were carefully
stopped by bolts and sealed by rubber rings, in such a way
as to prevent air leaks.

The determination of the average acoustic pressure, par-
ticle velocity and mean intensity levels was carried out
by means of a B&K 2133 intensity meter: the readout, in
third-octave bands, ranged from to , and
the integration time was kept sufficiently long ( ), so as
to maintain statistical errors below for all the quan-
tities.

Since measurements of particle velocity and sound in-
tensity (the latter required from equations (98)–(101)) in
a low frequency standing wave field are sensitive to the
channel phase mismatch, data were collected adopting the
probe reversal technique [20]: two values were taken for
both quantities, corresponding to the two opposite probe
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Figure 1. Sketch of the experimental setup used for the measure-
ments in the organ pipe.

axis directions. Then, the corrected mean squared velocity
and intensity were obtained by calculating respectively the
half sum and the half difference of the two values.

Figure 2 reports the spatial behaviors of and
obtained by measurements performed on a subset of
positions m apart ( ranging from to m with
respect to the bottom extremity). shows a sinusoidal
dependence on position with just one minimum near the
middle, in agreement with equation (99): this means that
the level of the fundamental component of the field (

) is predominant. On the other hand, the behavior of
exhibits a weak but statistically error-free dependence

on . Therefore, the prevision of equation (97),
, made on the basis of the simple interference field

model (see equation 93), though not perfectly fulfilled, is
reasonably good. Anyway, we decided to use the data of
the last measurement point ( m), that is the one
closest to the pipe end, where the sound reflection occurs.

Finally, in order to evaluate the number of frequency
components which could be effectively employed for the
determination of the reflection parameters, the sound pres-
sure level spectrum at the measurement point was mea-
sured by means of an FFT analyzer (Figure 3). As it can
be seen, the level of the fundamental frequency (

) is about higher than the levels of the
second and third harmonic components ( ,

), while the remaining ones are negligi-
ble. It is thus reasonable to limit the computation to the
first three frequencies only, since these dominate the over-
all spectrum.

The estimations of and for , , are reported
in the last two rows of Table I. These have been obtained
from equations (98) and (101) using the values of ,
and reported in the first three rows of the Table,
which correspond to the three third-octave bands centered
at , , Hz respectively. These results are in fairly
good agreement with the theoretical values corresponding
to a perfect pressure release surface, , , espe-
cially for the fundamental frequency.
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Figure 2. Measures of mean values of radiation pressure along
the pipe axis. Asterisks: (Lagrangian density ), squares:

, (energy density ).
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Figure 3. Spectrum of sound pressure level ( ) of the inner
field of the organ pipe.

6. Conclusions

The expression of wave-momentum flux density has been
derived in the context of linear field theory from the invari-
ance properties of the Lagrangian density. In particular,
using the 4-dimensional formalism of Minkowski space-
time, momentum has been related to the spatial part of the
acoustic energy-momentum tensor in the same manner as
energy density is linked to the temporal part of the ten-
sor expressed by the energy flux density. In this way, the
acoustic radiation pressure is a second order vector quan-
tity which is produced by the momentum flux of the wave
field.

Besides its conceptual importance for a correct under-
standing of the acoustic field from the point of view of the
conservation properties in the framework of linear acous-
tics, it has been shown that radiation pressure is a quan-
tity of practical interest when the interaction of the sound
field with its environment can be described by means of
a boundary condition involving the surface impedance. In
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Table I. The first three rows report respectively the values of ,
and corresponding to the first three harmonics; at the

bottom, the frequency dependence of the reflection modulus
and phase angle (in degrees) of the steady sound inside the
organ pipe is reported. The relative uncertainty of , and

is about 1 percent.

(Hz)

J(mW/m )
(mPa)
(mPa)

( )
( )

this context, the relationship between impedance and ra-
diation pressure has been exploited for the basic model
describing the reflection of a plane monochromatic wave
with standard boundary conditions (equation 80). A sim-
ilar relationship, as shown in Sect. 5, can be used for de-
termining the complex reflection amplitude at the top of
an open organ pipe, from the indirect local measurement
of the inner field radiation pressure during a steady excita-
tion.

Appendix

A1. Angular momentum conservation

Another interesting example illustrating the relation be-
tween invariance properties of the Lagrangian in the
field theoretical approach and conservation laws is treated
here by considering the acoustic Lorentz transformations

(A1)

where is a matrix leaving invariant the metric tensor
of space . From the invariance of with respect to these
transformations, a conservation law is obtained, which is
again written as a condition of vanishing divergence

(A2)

of the tensor with components

It is easily seen that for condition of equation (A2) to hold,
it is necessary and sufficient that the tensor be symmet-
ric: . In particular, the rotations of form a
subgroup of the Lorentz group and the corresponding con-
served quantity can be defined by means of the acoustic
angular momentum density

(A3)

where are the components of the vector of equation (48)
and are the components of the fully antisymmetric

Ricci tensor defined by

(A4)

even permutation of
odd permutation of
not a permutation of

To find the vector from the tensor , we write the com-
ponents , , of
and get

(A5)

where the antisymmetric tensor is related to by

(A6)

The angular momentum conservation law is found by
choosing in equation (A2) the components ,

:

(A7)

which can be rewritten as

(A8)

Here, the left-hand side is related to the time derivative of
the angular momentum density. In integral form, the con-
servation law has either form

(A9)

where the two quantities

(A10)

respectively represent the volume density and the surface
density of the moment of a force. The right-hand side of
equation (A9) is interpreted as the torque acting on the sur-
face of a body hit by acoustic radiation; for its correct com-
putation, the boundary conditions on the surface should be
taken into account. An example of an acoustic field with
angular momentum has been given by Schroeder, who also
demonstrated experimentally the existence of a torque act-
ing on an absorbing body set into rotation by the radiation
[21].
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A2. Comparison with electromagnetic radi-
ation pressure

The electromagnetic radiation pressure is obtained from
the Maxwell stress tensor [6], [22] through the same gen-
eral principles as the acoustic radiation pressure. Never-
theless, the comparison between the two quantities is not
trivial since some properties are specific of the two cases.

From the Lagrangian density of the electromagnetic
field in vacuum (Gauss units)

(A11)

written in terms of electric field and magnetic field ,
one finds the energy-momentum tensor

(A12)

here is the electromagnetic energy density, is
related to the Poynting vector , is the speed of light and

the electromagnetic momentum flux density:

(A13)

The decomposition of into irreducible parts is the fol-
lowing

(A14)

The radiation pressure on a surface with normal is now

(A15)

where the subscript denotes the normal component. The
isotropic and shear parts are

(A16)

The double inequality of equation (76) is now replaced by

(A17)

where the first becomes an equality when
(normal incidence of a plane wave), the second when

, ( and parallel to , as in the case
of a purely electrostatic field on a metal surface).

It is remarkable that is always a compression,
equal to one third of the energy density, while in the acous-
tic case this is true only in positions where , i.e.
where kinetic and potential energy densities are equal.
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